[1] KIM Y, CRUZ S S, LEE K, et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer[J]. Nature, 2017, 544(7650): 340-343. [2] 陈 琪,尹 越,任 芳,等.Ⅲ-Ⅴ化合物的范德华外延生长与应用[J].发光学报,2020,41(8):899-912. CHEN Q, YIN Y, REN F, et al. Van der Waals epitaxy of Ⅲ-Ⅴ compounds and their applications[J]. Chinese Journal of Luminescence, 2020, 41(8): 899-912(in Chinese). [3] 袁紫媛,潘 睿,夏顺吉,等.硅基上Si1-xGex合金的外延生长及性能研究[J].人工晶体学报,2020,49(11):2178-2193. YUAN Z Y, PAN R, XIA S J, et al. Epitaxial growth and characterizations of Si1-xGex alloys on Si substrate[J]. Journal of Synthetic Crystals, 2020, 49(11): 2178-2193(in Chinese). [4] 周 浩,徐 俞,曹 冰,等.石墨烯上外延GaN薄膜的取向演变研究[J].人工晶体学报,2020,49(5):794-798. ZHOU H, XU Y, CAO B, et al. Orientation evolution study of epitaxial GaN films on graphene[J]. Journal of Synthetic Crystals, 2020, 49(5): 794-798(in Chinese). [5] CHEN Z L, ZHANG X, DOU Z P, et al. High-brightness blue light-emitting diodes enabled by a directly grown graphene buffer layer[J]. Advanced Materials, 2018, 30(30): e1801608. [6] KIM H, KONG W, KIM J. Advanced epitaxial growth of LEDs on van der Waals materials[M]//Series in Display Science and Technology. Singapore: Springer Nature Singapore, 2021: 87-114. [7] HØIAAS I M, LIUDI MULYO A, VULLUM P E, et al. GaN/AlGaN nanocolumn ultraviolet light-emitting diode using double-layer graphene as substrate and transparent electrode[J]. Nano Letters, 2019, 19(3): 1649-1658. [8] LIANG D D, WEI T B, WANG J X, et al. Quasi van der Waals epitaxy nitride materials and devices on two dimension materials[J]. Nano Energy, 2020, 69: 104463. [9] ZHAO C, LI Z N, TANG T Y, et al. Novel Ⅲ-V semiconductor epitaxy for optoelectronic devices through two-dimensional materials[J]. Progress in Quantum Electronics, 2021, 76: 100313. [10] 吴孔平,张 冷,王丹蓓,等.金刚石(001)面在Cu多种覆盖度下的稳定构型与电子特性[J].人工晶体学报,2021,50(9):1640-1647. WU K P, ZHANG L, WANG D B, et al. Stable configurations of diamond (001) surface covered by Cu with various coverages and their electronic properties[J]. Journal of Synthetic Crystals, 2021, 50(9): 1640-1647(in Chinese). [11] HONG Y J, SAROJ R K, PARK W I, et al. One-dimensional semiconductor nanostructures grown on two-dimensional nanomaterials for flexible device applications[J]. APL Materials, 2021, 9(6): 060907. [12] TCHOE Y, CHUNG K, LEE K, et al. Free-standing and ultrathin inorganic light-emitting diode array[J]. NPG Asia Materials, 2019, 11: 37. [13] ANYEBE E A, KESARIA M. Recent advances in the van der Waals epitaxy growth of Ⅲ-Ⅴ semiconductor nanowires on graphene[J]. Nano Select, 2021, 2(4): 688-711. [14] CHUNG K, LEE C H, YI G C. Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices[J]. Science, 2010, 330(6004): 655-657. [15] KIM J, BAYRAM C, PARK H, et al. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene[J]. Nature Communications, 2014, 5: 4836. [16] 胡德巍,唐安江,唐石云,等.硅纳米线的制备及应用研究进展[J].人工晶体学报,2020,49(9):1743-1751. HU D W, TANG A J, TANG S Y, et al. Research progress on preparation and application of silicon nanowires[J]. Journal of Synthetic Crystals, 2020, 49(9): 1743-1751(in Chinese). [17] 叶佳佳.GexSi1-x薄膜在Si上的低温分子束外延生长及性能表征[D].南京:南京大学,2018:13-18. YE J J. Low temperature molecular beam epitaxial growth and characterization of GexSi1-x films on Si[D]. Nanjing: Nanjing University, 2018: 13-18(in Chinese). [18] 庞国旺,刘晨曦,潘多桥,等.非金属元素(F,S,Se,Te)掺杂对ZnO/graphene肖特基界面电荷及肖特基调控的理论研究[J].人工晶体学报,2022,51(4):628-636. PANG G W, LIU C X, PAN D Q, et al. Theoretical study on Schottky interfacial charge and Schottky regulation of ZnO/graphene by doping of nonmetallic elements (F, S, Se, Te)[J]. Journal of Synthetic Crystals, 2022, 51(4): 628-636(in Chinese). [19] YUAN G W, LIN D J, WANG Y, et al. Proton-assisted growth of ultra-flat graphene films[J]. Nature, 2020, 577(7789): 204-208. [20] JIN S E, ZONG J Y, CHEN W, et al. Epitaxial growth of uniform single-layer and bilayer graphene with assistance of nitrogen plasma[J]. Nanomaterials, 2021, 11(12): 3217. [21] LIU Y, HUANG Y, DUAN X F. Van der Waals integration before and beyond two-dimensional materials[J]. Nature, 2019, 567(7748): 323-333. [22] MATAEV E, RASTOGI S K, MADHUSUDAN A, et al. Synthesis of group Ⅳ nanowires on graphene: the case of Ge nanocrawlers[J]. Nano Letters, 2016, 16(8): 5267-5272. [23] ALASKAR Y, ARAFIN S, WICKRAMARATNE D, et al. Towards van der Waals epitaxial growth of GaAs on Si using a graphene buffer layer[J]. Advanced Functional Materials, 2014, 24(42): 6629-6638. [24] KIM H, LU K Y, LIU Y P, et al. Impact of 2D-3D heterointerface on remote epitaxial interaction through graphene[J]. ACS Nano, 2021, 15(6): 10587-10596. [25] KUMARESAN V, LARGEAU L, MADOURI A, et al. Epitaxy of GaN nanowires on graphene[J]. Nano Letters, 2016, 16(8): 4895-4902. [26] ZHU Z, SONG Y X, ZHANG Z P, et al. Vapor-solid-solid grown Ge nanowires at integrated circuit compatible temperature by molecular beam epitaxy[J]. Journal of Applied Physics, 2017, 122(9): 094304. [27] REN F, LIU B Y, CHEN Z L, et al. Van der Waals epitaxy of nearly single-crystalline nitride films on amorphous graphene-glass wafer[J]. Science Advances, 2021, 7(31): eabf5011. |