[1] 王世忠,徐良瑛,束碧云,等.SiC单晶的性质、生长及应用[J].无机材料学报,1999,14(4):527-534. WANG S Z, XU L Y, SHU B Y, et al. Physical properties, bulk growth, and applications of SiC single crystal[J]. Journal of Inorganic Materials, 1999, 14(4): 527-534(in Chinese). [2] KIMOTO T. Material science and device physics in SiC technology for high-voltage power devices[J]. Japanese Journal of Applied Physics, 2015, 54(4): 040103. [3] SHE X, HUANG A Q, LUCÍA Ó, et al. Review of silicon carbide power devices and their applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8193-8205. [4] WANG J, JIANG X. Review and analysis of SiC MOSFETs ruggedness and reliability[J]. IET Power Electronics, 2020, 13(3): 445-455. [5] JIA H J, ZHANG H, YANG Y T. A novel 4H-SiC MESFET with a L-gate and a partial p-type spacer[J]. Materials Science in Semiconductor Processing, 2012, 15(1): 2-5. [6] 苏鹏飞,杨洪星,何远东,等.多线切割工艺对研磨去除量的影响[J].电子工业专用设备,2016,45(9):15-18. SU P F, YANG H X, HE Y D, et al. The effect of multi-wire cutting process on the grinding removal[J]. Equipment for Electronic Products Manufacturing, 2016, 45(9): 15-18(in Chinese). [7] GOEL S. The Current understanding on the diamond machining of silicon carbide[J]. Journal of Physics D: Applied Physics, 2014, 47(24): 243001. [8] TREZONA R I, ALLSOPP D N, HUTCHINGS I M. Transitions between two-body and three-body abrasive wear: influence of test conditions in the microscale abrasive wear test[J]. Wear, 1999, 225/226/227/228/229: 205-214. [9] GUO L, ZHANG X R, CHEN S B, et al. An experimental study on the precision abrasive machining process of hard and brittle materials with ultraviolet-resin bond diamond abrasive tools[J]. Materials, 2019, 12(1): 125. [10] BERKMAN E, LEONARD R T, PAISLEY M J, et al. Defect status in SiC manufacturing[J]. Materials Science Forum, 2009, 615/616/617: 3-6. [11] WU P, EMORHOKPOR E, YOGANATHAN M, et al. Dislocation in 4H n+ SiC substrates and their relationship with epilayer defects[J]. Materials Science Forum, 2007, 556/557: 247-250. [12] OHTANI N. Toward the reduction of performance-limiting defects in SiC epitaxial substrates[J]. ECS Transactions, 2011, 41(8): 253-260. [13] LIU X S, WANG R, ZHANG J R, et al. Doping-dependent nucleation of basal plane dislocations in 4H-SiC[J]. Journal of Physics D: Applied Physics, 2022, 55(33): 334002. [14] TSAI M Y, LI K Y, JI S Y. Novel abrasive-impregnated pads and diamond plates for the grinding and lapping of single-crystal silicon carbide wafers[J]. Applied Sciences, 2021, 11(4): 1783. [15] ZHOU P, ZHU N N, XU C Y, et al. Mechanical removal of SiC by multi-abrasive particles in fixed abrasive polishing using molecular dynamics simulation[J]. Computational Materials Science, 2021, 191: 110311. [16] 胡海明,李淑娟,高晓春,等.SiC单晶片研磨过程材料去除率仿真与试验研究[J].兵工学报,2013,34(9):1125-1131. HU H M, LI S J, GAO X C, et al. Simulation and experiment of MRR in lapping process of SiC monocrystal wafers[J]. Acta Armamentarii, 2013, 34(9): 1125-1131(in Chinese). [17] 沈 琦.多晶金刚石磨粒的制备和加工性能[D].南京:南京航空航天大学,2017:46-47. SHEN Q. Preparation and machining performance of aggregated diamond abrasive[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 46-47(in Chinese). [18] MAEDA H, TAKANABE R, TAKEDA A, et al. High-speed slicing of SiC ingot by high-speed multi wire saw[J]. Materials Science Forum, 2014, 778/779/780: 771-775. [19] 徐 伟,王英民,何 超.金刚石多线切割材料去除率对SiC晶片翘曲度的影响[J].超硬材料工程,2016,28(1):24-27. XU W, WANG Y M, HE C. Influence of diamond multi-wire cutting material removal rate on SiC wafer warpage[J]. Superhard Material Engineering, 2016, 28(1): 24-27(in Chinese). [20] JIANGSU AUCKSUN INTEGRATED CIRCUIT CO. Method for controlling processing of BOW value of abrasive products, involves cutting sapphire ingots are into wafers using multi-wire, sorting cutter btained line-cut wafer is by positive and negative BOW surfaces: China, CN110722692-A[P]. 2020-01-24. [21] 卢陈英.肝癌靶向SPIO/铁蛋白质粒复合纳米粒的MR分子影像诊断研究[D].杭州:浙江大学,2018. LU C Y. MR molecular imaging diagnosis of hepatic tumor-targeting SPIO/ferritin plasmid complex nanoparticles[D]. Hangzhou: Zhejiang University, 2018(in Chinese). [22] 刘 丹,李 杰,曹 妍,等.纳米颗粒物对肺表面活性物质界面性质的影响[J].中国环境科学,2022,42(5):2379-2386. LIU D, LI J, CAO Y, et al. Effect of nano-particles on interfacial chemical properties of pulmonary surfactant[J]. China Environmental Science, 2022, 42(5): 2379-2386(in Chinese). [23] POWELL R W. Thermal conductivities and expansion coefficients of water and ice[J]. Advances in Physics, 1958, 7(26): 276-297. [24] GANESHKUMAR J, KATHIRKAMAN D, RAJA K, et al. Experimental study on density, thermal conductivity, specific heat, and viscosity of water-ethylene glycol mixture dispersed with carbon nanotubes[J]. Thermal Science, 2017, 21(1 Part A): 255-265. |