[1] GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al. Solar cell efficiency tables (version 59)[J]. Progress in Photovoltaics: Research and Applications, 2022, 30(1): 3-12. [2] WELCH A W, BARANOWSKI L L, ZAWADZKI P, et al. Accelerated development of CuSbS2 thin film photovoltaic device prototypes[J]. Progress in Photovoltaics: Research and Applications, 2016, 24(7): 929-939. [3] YANG B, WANG L A, HAN J, et al. CuSbS2 as a promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study[J]. Chemistry of Materials, 2014, 26(10): 3135-3143. [4] ZHAO M H, YU J S, FU L J, et al. Thin-film solar cells based on selenized CuSbS2 absorber[J]. Nanomaterials, 2021, 11(11): 3005. [5] SAADAT M, AMIRI O, MAHMOOD P H. Analysis and performance assessment of CuSbS2-based thin-film solar cells with different buffer layers[J]. The European Physical Journal Plus, 2022, 137(5): 582. [6] BURGELMAN M, NOLLET P, DEGRAVE S. Modelling polycrystalline semiconductor solar cells[J]. Thin Solid Films, 2000, 361/362: 527-532. [7] BURGELMAN M, DECOCK K, KHELIFI S, et al. Advanced electrical simulation of thin film solar cells[J]. Thin Solid Films, 2013, 535: 296-301. [8] LIU F, ZHU J, WEI J F, et al. Numerical simulation: toward the design of high-efficiency planar perovskite solar cells[J]. Applied Physics Letters, 2014, 104(25): 253508. [9] LI W M, LI W J, FENG Y, et al. Numerical analysis of the back interface for high efficiency wide band gap chalcopyrite solar cells[J]. Solar Energy, 2019, 180: 207-215. [10] ZHANG J Y, WANG T, YAO B, et al. Doping behavior of Zn in CdS and its effect on the power conversion efficiency of the Cu2ZnSn(S, Se)4 solar cell[J]. The Journal of Physical Chemistry C, 2021, 125(49): 27449-27457. [11] NYKYRUY L I, YAVORSKYI R S, ZAPUKHLYAK Z R, et al. Evaluation of CdS/CdTe thin film solar cells: SCAPS thickness simulation and analysis of optical properties[J]. Optical Materials, 2019, 92: 319-329. [12] KARTHICK S, VELUMANI S, BOUCLÉ J. Experimental and SCAPS simulated formamidinium perovskite solar cells: a comparison of device performance[J]. Solar Energy, 2020, 205: 349-357. [13] 肖建敏, 袁吉仁, 王 鹏, 等. 铅基卤化物钙钛矿太阳电池的模拟研究[J]. 人工晶体学报, 2022, 51(6): 1051-1058. XIAO J M, YUAN J R, WANG P, et al. Simulation of lead-based halide perovskite solar cells[J]. Journal of Synthetic Crystals, 2022, 51(6): 1051-1058 (in Chinese). [14] LI C R, YAO B, LI Y F, et al. Impact of sequential annealing step on the performance of Cu2ZnSn(S, Se)4 thin film solar cells[J]. Superlattices and Microstructures, 2016, 95: 149-158. [15] SINGH P K, RAI S, LOHIA P, et al. Comparative study of the CZTS, CuSbS2 and CuSbSe2 solar photovoltaic cell with an earth-abundant non-toxic buffer layer[J]. Solar Energy, 2021, 222: 175-185. [16] SAADAT M, AMIRI O, MAHMOOD P H. Potential efficiency improvement of CuSb(S1-x, Sex)2 thin film solar cells by the Zn(O, S) buffer layer optimization[J]. Solar Energy, 2021, 225: 875-881. [17] MICHAELSON H B. The work function of the elements and its periodicity[J]. Journal of Applied Physics, 1977, 48(11): 4729-4733. [18] PATEL M, RAY A. Enhancement of output performance of Cu2ZnSnS4 thin film solar cells: a numerical simulation approach and comparison to experiments[J]. Physica B: Condensed Matter, 2012, 407(21): 4391-4397. [19] 周 涛, 李 媛, 陆晓东, 等. 背表面沟槽型高效背接触太阳电池的输出特性研究[J]. 渤海大学学报(自然科学版), 2019, 40(4): 371-377+384. ZHOU T, LI Y, LU X D, et al. Output characteristics of high efficiency back contact solar cell with back surface groove[J]. Journal of Bohai University (Natural Science Edition), 2019, 40(4): 371-377+384 (in Chinese). [20] WADA T, MAEDA T. Optical properties and electronic structures of CuSbS2, CuSbSe2, and CuSb(S1-xSex)2 solid solution[J]. Physica Status Solidi C, 2017, 14(6): 1600196. [21] BANU S, AHN S J, AHN S K, et al. Fabrication and characterization of cost-efficient CuSbS2 thin film solar cells using hybrid inks[J]. Solar Energy Materials and Solar Cells, 2016, 151: 14-23. |