[1] LIAO Y, LIN J N, CUI B H, et al. Well-dispersed ultrasmall ruthenium on TiO2(P25) for effective photocatalytic N2 fixation in ambient condition[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 387: 112100. [2] 王雪晶, 马瑞霄, 徐 娟, 等. 缺陷半导体用于光催化固氮的研究进展[J]. 硅酸盐通报, 2022, 41(3): 1053-1062. WANG X J, MA R X, XU J, et al. Research progress of defective semiconductor used in photocatalytic nitrogen fixation[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(3): 1053-1062 (in Chinese). [3] JIA H P, QUADRELLI E A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen[J]. Chemical Society Reviews, 2014, 43(2): 547-564. [4] RAFIQUL I, WEBER C, LEHMANN B, et al. Energy efficiency improvements in ammonia production: perspectives and uncertainties[J]. Energy, 2005, 30(13): 2487-2504. [5] LI J A, GE J H, XIAO B Q, et al. Ozone modification nanoarchitectonics of BiOBr photocatalysts for enhanced nitrogen fixation performance[J]. Nano, 2022, 17(9): 2250065. [6] CHEN J F, QIU K H. Oxygen vacancies and interfacial electric field co-induced photocatalytic performance of OVs-BiOI/α-Bi2O3 heterojunctions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615: 126262. [7] GUO X J, YANG X, YUAN X Y, et al. Oxygen vacancy defects and a field effect-mediated ZnO/WO2.92 heterojunction for enhanced corrosion resistance[J]. Inorganic Chemistry, 2021, 60(20): 15390-15403. [8] KONSTANTINOU K, ELLIOTT S R, AKOLA J. Inherent electron and hole trapping in amorphous phase-change memory materials: Ge2Sb2Te5[J]. Journal of Materials Chemistry C, 2022, 10(17): 6744-6753. [9] STREATFEILD R A. Enriching the earth: fritz haber, carl bosch, and the transformation of world food production[J]. Electronic Green Journal, 2002, 1(17). [10] WANG S Y, HAI X A, DING X, et al. Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-driven nitrogen fixation in pure water[J]. Advanced Materials, 2017, 29(31): 1701774. [11] ZHANG X, MATRAS-POSTOLEK K, YANG P. Heterojunction nanoarchitectonics of WOx/Au-g-C3N4 with efficient photogenerated carrier separation and transfer toward improved NO and benzene conversion[J]. Materials Today Advances, 2023, 17: 100355. [12] CAI Z, BI Y M, HU E Y, et al. Single-crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis[J]. Advanced Energy Materials, 2018, 8(3): 1701694. [13] LIAO X Y, PARK H. Effects of the surface termination and the oxygen vacancy position on LaNiO3 ultra-thin films: first-principles study[J]. Physical Review Materials, 2023, 7: 015002. [14] WEI R, ZHANG K S, ZHAO P J, et al. Defect-rich FeCoNiPB/(FeCoNi)3O4-x high-entropy composite nanoparticles for oxygen evolution reaction: impact of surface activation[J]. Applied Surface Science, 2021, 549: 149327. [15] SU Y P, ZHAO Z C, LI S, et al. Rational design of a novel quaternary ZnO@ZnS/Ag@Ag2S nanojunction system for enhanced photocatalytic H2 production[J]. Inorganic Chemistry Frontiers, 2018, 5(12): 3074-3081. [16] ZHAO L J, ZHANG X C, FAN C M, et al. First-principles study on the structural, electronic and optical properties of BiOX (X=Cl, Br, I) crystals[J]. Physica B: Condensed Matter, 2012, 407(17): 3364-3370. [17] 马生花, 马芙莲, 解玉龙. BiOI/ZIF-8复合材料的制备及光催化性能[J]. 硅酸盐通报, 2020, 39(9): 2993-3000. MA S H, MA F L, XIE Y L. Preparation and photocatalytic performance of BiOI/ZIF-8 composite[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(9): 2993-3000 (in Chinese). [18] YANG C, HE Y X, CHEN Y B, et al. 3-mercaptopropionic acid assisted in-situ construction of thin Bi2S3/BiOCl composites with significantly improved photocatalytic activity[J]. Chemical Physics Letters, 2022, 787: 139205. [19] WANG H J, HUA C H, LAN M, et al. One-pot solvothermal synthesis of flower-like S-doped BiOCl for enhanced photocatalytic property in dye degradation and nitrogen fixation[J]. ChemistrySelect, 2021, 6(23): 5771-5777. [20] MA B J, WEN F Y, JIANG H F, et al. The synergistic effects of two co-catalysts on Zn2GeO4 on photocatalytic water splitting[J]. Catalysis Letters, 2010, 134(1): 78-86. [21] HAN J S, AN H J, KIM T W, et al. Effect of structure-controlled ruthenium oxide by nanocasting in electrocatalytic oxygen and chlorine evolution reactions in acidic conditions[J]. Catalysts, 2019, 9(6): 549. [22] LI X M, CAO J K, PENG M Y. The origin of the heterogeneous distribution of bismuth in aluminosilicate laser glasses[J]. Journal of the American Ceramic Society, 2018, 101(7): 2921-2929. [23] BHARATH G, RAMBABU K, HAI A, et al. Highly selective etherification of fructose and 5-hydroxymethylfurfural over a novel Pd-Ru/MXene catalyst for sustainable liquid fuel production[J]. International Journal of Energy Research, 2021, 45(10): 14680-14691. [24] NAING H H, LI Y, GHASEMI J B, et al. Enhanced visible-light-driven photocatalysis of in situ reduced of bismuth on BiOCl nanosheets and montmorillonite loading: synergistic effect and mechanism insight[J]. Chemosphere, 2022, 304: 135354. [25] LI J J, ZHANG M, WENG B, et al. Oxygen vacancies mediated charge separation and collection in Pt/WO3 nanosheets for enhanced photocatalytic performance[J]. Applied Surface Science, 2020, 507: 145133. [26] DENG P H, HONG W S, CHENG Z W, et al. Facile fabrication of nickel/porous g-C3N4 by using carbon dot as template for enhanced photocatalytic hydrogen production[J]. International Journal of Hydrogen Energy, 2020, 45: 33543-33551. [27] CAO B, LI G S, LI H X. Hollow spherical RuO2@TiO2@Pt bifunctional photocatalyst for coupled H2 production and pollutant degradation[J]. Applied Catalysis B: Environmental, 2016, 194: 42-49. [28] LI H E, XU X Y, LIN X H, et al. Introducing oxygen vacancies in a bi-metal oxide nanosphere for promoting electrocatalytic nitrogen reduction[J]. Nanoscale, 2023, 15(8): 4071-4079. |