[1] LIU Y, WEISS N O, DUAN X D, et al. Van der Waals heterostructures and devices[J]. Nature Reviews Materials, 2016, 1: 16042. [2] WANG K P, WANG J, FAN J T, et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets[J]. ACS Nano, 2013, 7(10): 9260-9267. [3] CHEN L X, WANG H M, TANG S J, et al. Edge control of graphene domains grown on hexagonal boron nitride[J]. Nanoscale, 2017, 9(32): 11475-11479. [4] TIWARI P, JAISWAL J, CHANDRA R. Optical and electrical tunability in vertically aligned MoS2 thin films prepared by DC sputtering: role of film thickness[J]. Vacuum, 2022, 198: 110903. [5] ZHOU K Q, GAO R, QIAN X D. Self-assembly of exfoliated molybdenum disulfide (MoS2) nanosheets and layered double hydroxide (LDH): towards reducing fire hazards of epoxy[J]. Journal of Hazardous Materials, 2017, 338: 343-355. [6] SHI J, WU D, ZHENG X M, et al. From MoO2@MoS2 core-shell nanorods to MoS2 nanobelts[J]. Physica Status Solidi (b), 2018, 255(9): 1800254. [7] SHI E Z, GAO Y, FINKENAUER B P, et al. Two-dimensional halide perovskite nanomaterials and heterostructures[J]. Chemical Society Reviews, 2018, 47(16): 6046-6072. [8] HUSSAIN S, SHEHZAD M A, VIKRAMAN D, et al. Synthesis and characterization of large-area and continuous MoS2 atomic layers by RF magnetron sputtering[J]. Nanoscale, 2016, 8(7): 4340-4347. [9] CAO X H, TAN C L, ZHANG X, et al. Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion[J]. Advanced Materials, 2016, 28(29): 6167-6196. [10] GOVINDASAMY M, CHEN S M, MANI V, et al. Molybdenum disulfide nanosheets coated multiwalled carbon nanotubes composite for highly sensitive determination of chloramphenicol in food samples milk, honey and powdered milk[J]. Journal of Colloid and Interface Science, 2017, 485: 129-136. [11] KIM B H, YOON H, KWON S H, et al. Direct WS2 photodetector fabrication on a flexible substrate[J]. Vacuum, 2021, 184: 109950. [12] CHO K, PAK J, CHUNG S, et al. Recent advances in interface engineering of transition-metal dichalcogenides with organic molecules and polymers[J]. ACS Nano, 2019, 13(9): 9713-9734. [13] CHEN B, MENG Y H, SHA J W, et al. Preparation of MoS2/TiO2 based nanocomposites for photocatalysis and rechargeable batteries: progress, challenges, and perspective[J]. Nanoscale, 2017, 10(1): 34-68. [14] GUNDA R K, NARALA S K R. Evaluation of friction and wear characteristics of electrostatic solid lubricant at different sliding conditions[J]. Surface and Coatings Technology, 2017, 332: 341-350. [15] BARZEGAR M, IRAJI ZAD A, TIWARI A. On the performance of vertical MoS2 nanoflakes as a gas sensor[J]. Vacuum, 2019, 167: 90-97. [16] LUKASZKOWICZ K, KUBACKI J, BALIN K, et al. Characteristics of CrAlSiN+MoS2 coating deposited by cathodic arc and magnetron sputtering process[J]. Vacuum, 2019, 163: 360-367. [17] LIU X, MA G J, SUN G, et al. MoSx-Ta composite coatings on steel by D.C magnetron sputtering[J]. Vacuum, 2013, 89: 203-208. [18] GRUBER W, HADJIAMINI NAJAFABADI H, GECKLE U, et al. Crystallization of magnetron sputtered amorphous Si1-xCx films (x=1/3) studied by grazing incidence X-ray diffractometry[J]. Philosophical Magazine, 2010, 90(29): 3855-3865. [19] GONG C Y, XIAO J R, ZHU L W, et al. Crystal structure and tribological properties of molybdenum disulfide films prepared by magnetron sputtering technology[J]. Current Applied Physics, 2019, 19(12): 1318-1324. [20] LEI G, GUO Y G, ZHU J G, et al. Sequential subspace optimization method for electromagnetic devices design with orthogonal design technique[J]. IEEE Transactions on Magnetics, 2012, 48(2): 479-482. [21] ZHOU K Q, JIANG S H, BAO C L, et al. Preparation of poly(vinyl alcohol) nanocomposites with molybdenum disulfide (MoS2): structural characteristics and markedly enhanced properties[J]. RSC Advances, 2012, 2(31): 11695-11703. [22] NAN H Y, WANG Z L, WANG W H, et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding[J]. ACS Nano, 2014, 8(6): 5738-5745. [23] LI H, ZHANG Q, YAP C C R, et al. From bulk to monolayer MoS2: evolution of Raman scattering[J]. Advanced Functional Materials, 2012, 22(7): 1385-1390. [24] SIROTA B, GLAVIN N, VOEVODIN A A. Room temperature magnetron sputtering and laser annealing of ultrathin MoS2 for flexible transistors[J]. Vacuum, 2019, 160: 133-138. [25] KARATAŞ A, YILMAZ M. Molybdenum disulfide thin films fabrication from multi-phase molybdenum oxide using magnetron sputtering and CVD systems together[J]. Superlattices and Microstructures, 2020, 143: 106555. [26] CAI S, GUO P, LIU J Z, et al. Friction and wear mechanism of MoS2/C composite coatings under atmospheric environment[J]. Tribology Letters, 2017, 65(3): 79. [27] PRADHAN G, SHARMA A K. Temperature controlled 1T/2H phase ratio modulation in mono- and a few layered MoS2 films[J]. Applied Surface Science, 2019, 479: 1236-1245. [28] MATSUURA K, OHASHI T, MUNETA I, et al. Low-carrier-density sputtered MoS2 film by vapor-phase sulfurization[J]. Journal of Electronic Materials, 2018, 47(7): 3497-3501. [29] BURMAN D, SANTRA S, PRAMANIK P, et al. Pt decorated MoS2nanoflakes for ultrasensitive resistive humidity sensor[J]. Nanotechnology, 2018, 29(11): 115504. [30] ZHANG K, YAO J X, ZUO X Q, et al. Interconnected molybdenum disulfide@tin disulfide heterojunctions with different morphologies: a type of enhanced counter electrode for dye-sensitized solar cells[J]. CrystEngComm, 2018, 20(9): 1252-1263. [31] ZHAO J, HE Y Y, WANG Y F, et al. An investigation on the tribological properties of multilayer graphene and MoS2 nanosheets as additives used in hydraulic applications[J]. Tribology International, 2016, 97: 14-20. [32] PIETRZYK B, MISZCZAK S, KACZMAREK Ł, et al. Low friction nanocomposite aluminum oxide/MoS2 coatings prepared by sol-gel method[J]. Ceramics International, 2018, 44(7): 8534-8539. [33] GANGOPADHYAY S, ACHARYA R, CHATTOPADHYAY A K, et al. Effect of substrate bias voltage on structural and mechanical properties of pulsed DC magnetron sputtered TiN-MoSx composite coatings[J]. Vacuum, 2010, 84(6): 843-850. [34] XIAO J R, GONG C Y, QI M, et al. Effect of TiN/C microstructure composite layer on the adhesion of FDLC film onto silicon substrate[J]. Coatings, 2018, 8(1): 18. |