[1] FANG Z M, LIU L, ZHANG Z M, et al. CsPbI2.25Br0.75 solar cells with 15.9% efficiency[J]. Science Bulletin, 2019, 64(8): 507-510. [2] DUAN Z T, LIANG X Y, FENG Y, et al. Sb2Se3 thin-film solar cells exceeding 10% power conversion efficiency enabled by injection vapor deposition technology[J]. Advanced Materials, 2022, 34(30): 2202969. [3] WANG W, WINKLER M T, GUNAWAN O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency[J]. Advanced Energy Materials, 2014, 4(7): 1301465. [4] YUAN C C, ZHANG L J, LIU W F, et al. Rapid thermal process to fabricate Sb2Se3 thin film for solar cell application[J]. Solar Energy, 2016, 137: 256-260. [5] CHEN C, WANG L, GAO L, et al. 6.5% certified efficiency Sb2Se3 solar cells using PbS colloidal quantum dot film as hole-transporting layer[J]. ACS Energy Letters, 2017, 2(9): 2125-2132. [6] LI K H, WANG S Y, CHEN C, et al. 7.5% n-i-p Sb2Se3 solar cells with CuSCN as a hole-transport layer[J]. Journal of Materials Chemistry A, 2019, 7(16): 9665-9672. [7] CANG Q F, GUO H F, JIA X G, et al. Enhancement in the efficiency of Sb2Se3 solar cells by adding low lattice mismatch CuSbSe2 hole transport layer[J]. Solar Energy, 2020, 199: 19-25. [8] MA Y Y, YIN Y W, LI G, et al. Aqueous solution processed MoS3 as an eco-friendly hole-transport layer for all-inorganic Sb2Se3 solar cells[J]. Chemical Communications, 2020, 56(96): 15173-15176. [9] ZHANG J, KONDROTAS R, LU S C, et al. Alternative back contacts for Sb2Se3 solar cells[J]. Solar Energy, 2019, 182: 96-101. [10] LIU C, SHEN K, LIN D X, et al. Back contact interfacial modification in highly-efficient all-inorganic planar n-i-p Sb2Se3 solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(34): 38397-38405. [11] HOBSON T D C, PHILLIPS L J, HUTTER O S, et al. Isotype heterojunction solar cells using n-type Sb2Se3 thin films[J]. Chemistry of Materials, 2020, 32(6): 2621-2630. [12] GUO L P, ZHANG B Y, QIN Y, et al. Tunable quasi-one-dimensional ribbon enhanced light absorption in Sb2 Se3 thin-film solar cells grown by close-space sublimation[J]. Solar RRL, 2018, 2(10): 1800128. [13] JIN X, YUAN Y, JIANG C H, et al. Solution processed NiOx hole-transporting material for all-inorganic planar heterojunction Sb2S3 solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 185: 542-548. [14] GUO H F, JIA X G, HADKE S H, et al. Highly efficient and thermally stable Sb2Se3 solar cells based on a hexagonal CdS buffer layer by environmentally friendly interface optimization[J]. Journal of Materials Chemistry C, 2020, 8(48): 17194-17201. [15] LI Y, ZHOU Y, LUO J J, et al. The effect of sodium on antimony selenide thin film solar cells[J]. RSC Advances, 2016, 6(90): 87288-87293. [16] SHI X Q, ZHANG F, DAI S Y, et al. Nanorod-textured Sb2(S, Se)3 bilayer with enhanced light harvesting and accelerated charge extraction for high-efficiency Sb2(S, Se)3 solar cells[J]. Chemical Engineering Journal, 2022, 437: 135341. [17] GUO L P, VIJAYARAGHAVAN S N, DUAN X M, et al. Stable and efficient Sb2Se3 solar cells with solution-processed NiOx hole-transport layer[J]. Solar Energy, 2021, 218: 525-531. [18] RÜHLE S. Tabulated values of the Shockley-Queisser limit for single junction solar cells[J]. Solar Energy, 2016, 130: 139-147. |