[1] JAESEONG P, TANG M C, CHEN S M, et al. Heteroepitaxial growth of III-V semiconductors on silicon[J]. Crystals, 2020, 10(12): 1163. [2] YANG J J, TANG M C, CHEN S M, et al. From past to future: on-chip laser sources for photonic integrated circuits[J]. Light: Science & Applications, 2023, 12(1): 1-3. [3] PAVESI L. Thirty years in silicon photonics: a personal view[J]. Frontiers in Physics, 2021, 9: 709. [4] 黄北举, 张 赞, 张赞允, 等. 硅基光电子与微电子单片集成研究进展[J]. 微纳电子与智能制造, 2019, 1(3): 55-67. HUANG B J, ZHANG Z, ZHANG Z Y, et al. Research progress on monolithic integration of silicon based optoelectronics with microelectronics[J]. Micro/Nano Electronics and Intelligent Manufacturing, 2019, 1(3): 55-67(in Chinese). [5] CLOUTIER S G, KOSSYREV P A, XU J. Optical gain and stimulated emission in periodic nanopatterned crystalline silicon[J]. Nature Materials, 2005, 4(12): 887-891. [6] CAMACHO-AGUILERA R E, CAI Y, PATEL N, et al. An electrically pumped germanium laser[J]. Optics Express, 2012, 20(10): 11316-11320. [7] ZHOU Y Y, MIAO Y H, OJO S, et al. Electrically injected GeSn lasers on Si operating up to 100 K[J]. Optica, 2020, 7(8): 924-928. [8] FANG A W, PARK H, COHEN O, et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser[J]. Optics Express, 2006, 14(20): 9203-9210. [9] THIESSEN T, MAK J C C, DA FONSECA J, et al. Back-side-on-BOX heterogeneously integrated III-V-on-silicon O-band distributed feedback lasers[J]. Journal of Lightwave Technology, 2020, 38(11): 3000-3006. [10] 韩伟华, 余金中, 王启明. 硅基键合激光器的研究进展[J]. 半导体光电, 2000, 21(2): 77-79+84. HAN W H, YU J Z, WANG Q M. Research advances in lasers bonded on silicon substrates[J]. Semiconductor Optoelectronics, 2000, 21(2): 77-79+84 (in Chinese). [11] DUPREZ H, DESCOS A, FERROTTI T, et al. 1310 nm hybrid InP/InGaAsP on silicon distributed feedback laser with high side-mode suppression ratio[J]. Optics Express, 2015, 23(7): 8489-8497. [12] SHANG C, WAN Y T, SELVIDGE J, et al. Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits[J]. ACS Photonics, 2021, 8(9): 2555-2566. [13] SHANG C, SELVIDGE J, HUGHES E, et al. A pathway to thin GaAs virtual substrate on on-axis Si (001) with ultralow threading dislocation density[J]. Physica Status Solidi (a), 2021, 218(3): 2000402. [14] SELVIDGE J, NORMAN J, HUGHES E T, et al. Defect filtering for thermal expansion induced dislocations in III-V lasers on silicon[J]. Applied Physics Letters, 2020, 117(12): 122101. [15] 赵佳生, 夏诒民, 李乔力, 等. 低成本可调谐半导体激光器研究进展[J]. 光学学报, 2022, 42(17): 1714003. ZHAO J S, XIA Y M, LI Q L, et al. Research progress in low-cost tunable semiconductor lasers[J]. Acta Optica Sinica, 2022, 42(17): 1714003 (in Chinese). [16] SHANG C, BEGLEY M R, GIANOLA D S, et al. Crack propagation in low dislocation density quantum dot lasers epitaxially grown on Si[J]. APL Materials, 2022, 10(1): 011114. [17] 李家琛, 王 俊, 肖春阳, 等. 应变平衡超晶格改善GaAs/Si(001)表面研究[J]. 中国激光, 2023, 50(6): 0603002. LI J C, WANG J, XIAO C Y, et al. Investigation of surface improvement of GaAs/Si(001) with strain balanced superlattice[J]. Chinese Journal of Lasers, 2023, 50(6): 0603002(in Chinese). [18] 肖春阳, 王 俊, 李家琛, 等. 分子束外延GaAs/Si(001)材料反相畴的湮灭机理[J]. 中国激光, 2022, 49(23): 2301006. XIAO C Y, WANG J, LI J C, et al. Annihilation mechanism of inversion domain of GaAs/Si(001) material by molecular beam epitaxy[J]. Chinese Journal of Lasers, 2022, 49(23): 2301006 (in Chinese). [19] LIU A Y, SRINIVASAN S, NORMAN J, et al. Quantum dot lasers for silicon photonics[J]. Photonics Research, 2015, 3(5): B1-B9. [20] LI W, CHEN S, TANG M, et al. Effect of rapid thermal annealing on threading dislocation density in III-V epilayers monolithically grown on silicon[J]. Journal of Applied Physics, 2018, 123(21): 215303. [21] ZHU S, SHI B, LAU K M. Electrically pumped 1.5 μm InP-based quantum dot microring lasers directly grown on (001) Si[J]. Optics Letters, 2019, 44(18): 4566-4569. [22] SHI B, ZHU S, LI Q, et al. 1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si[J]. Applied Physics Letters, 2017, 110(12): 121109. [23] WEI W Q, WANG J H, ZHANG B, et al. InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1 300 nm and 1 550 nm[J]. Applied Physics Letters, 2018, 113(5): 053107. [24] VOLZ K, BEYER A, WITTE W, et al. GaP-nucleation on exact Si (001) substrates for III/V device integration[J]. Journal of Crystal Growth, 2011, 315(1): 37-47. [25] KWOEN J, JANG B, LEE J, et al. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001)[J]. Optics Express, 2018, 26(9): 11568-11576. [26] ALCOTTE R, MARTIN M, MOEYAERT J, et al. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility[J]. APL Materials, 2016, 4(4): 046101. [27] MARTIN M, CALISTE D, CIPRO R, et al. Toward the III-V/Si co-integration by controlling the biatomic steps on hydrogenated Si(001)[J]. Applied Physics Letters, 2016, 109(25): 253103. [28] BARRETT C S C, ATASSI A, KENNON E L, et al. Dissolution of antiphase domain boundaries in GaAs on Si(001) via post-growth annealing[J]. Journal of Materials Science, 2019, 54(9): 7028-7034. [29] AKIYAMA M, KAWARADA Y, KAMINISHI K. Growth of single domain GaAs layer on (100)-oriented Si substrate by MOCVD[J]. Japanese Journal of Applied Physics, 1984, 23(11A): L843. [30] JOSHKIN V, ORLIKOVSKY A, OKTYABRSKY S, et al. Biaxial compression in GaAs thin films grown on Si[J]. Journal of Crystal Growth, 1995, 147(1): 13-18. [31] WANG Y F, WANG Q, JIA Z G, et al. Three-step growth of metamorphic GaAs on Si (001) by low-pressure metal organic chemical vapor deposition[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2013, 31(5): 051211. [32] LEE J W, SHICHIJO H, TSAI H L, et al. Defect reduction by thermal annealing of GaAs layers grown by molecular beam epitaxy on Si substrates[J]. Applied Physics Letters, 1987, 50(1): 31-33. [33] YAMAGUCHI M, NISHIOKA T, SUGO M. Analysis of strained-layer superlattice effects on dislocation density reduction in GaAs on Si substrates[J]. Applied Physics Letters, 1989, 54(1): 24-26. [34] WANG Z H, WEI W Q, FENG Q, et al. InAs/GaAs quantum dot single-section mode-locked lasers on Si (001) with optical self-injection feedback[J]. Optics Express, 2021, 29(2): 674-683. [35] TANG M C, CHEN S M, WU J, et al. Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(6): 50-56. [36] HAYAFUJI N, KIZUKI H, MIYASHITA M, et al. Crack propagation and mechanical fracture in GaAs-on-Si[J]. Japanese Journal of Applied Physics, 1991, 30(3R): 459. [37] SARAVANAN S, HAYASHI Y, SOGA T, et al. Growth and characterization of GaAs epitaxial layers on Si/porous Si/Si substrate by chemical beam epitaxy[J]. Journal of Applied Physics, 2001, 89(9): 5215-5218. [38] NISHIMURA T, KADOIWA K, MIYASHITA M, et al. Crack-free and low dislocation density GaAs-on-Si grown by 2-reactor MOCVD system[J]. Journal of Crystal Growth, 1991, 112(4): 791-796. [39] TAKANO Y, KURURI T, KUWAHARA K, et al. Residual strain and threading dislocation density in InGaAs layers grown on Si substrates by metalorganic vapor-phase epitaxy[J]. Applied Physics Letters, 2000, 78(1): 93-95. [40] SARAVANAN S, ADACHI M, SATOH N, et al. Stress reduction and structural quality improvement due to in doping in GaAs/Si[J]. Materials Science and Engineering: B, 2000, 68(3): 166-170. [41] HUANG H, REN X M, LV J H, et al. Crack-free GaAs epitaxy on Si by using midpatterned growth: application to Si-based wavelength-selective photodetector[J]. Journal of Applied Physics, 2008, 104(11): 113114. [42] OH S, JUN D H, SHIN K W, et al. Control of crack formation for the fabrication of crack-free and self-isolated high-efficiency gallium arsenide photovoltaic cells on silicon substrate[J]. IEEE Journal of Photovoltaics, 2016, 6(4): 1031-1035. [43] LEE A, JIANG Q, TANG M C, et al. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities[J]. Optics Express, 2012, 20(20): 22181-22187. [44] LIU A L, ZHANG C, SNYDER A, et al. MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon[J]. Journal of Vacuum Science & Technology B, 2014, 32(2): 2C108. [45] WANG J, REN X M, DENG C, et al. Extremely low-threshold current density InGaAs/AlGaAs quantum-well lasers on silicon[J]. Journal of Lightwave Technology, 2015, 33(15): 3163-3169. [46] LIU Z L, LIU H, JIANG C, et al. Improved performance of InGaAs/AlGaAs quantum well lasers on silicon using InAlAs trapping layers[J]. Optics Express, 2023, 31(5): 7900-7906. [47] ZHOU Z C, OU X P, FANG Y T, et al. Prospects and applications of on-chip lasers[J]. eLight, 2023, 3(1): 1. [48] ZHU S, SHI B, LI Q, et al. 1.5 μm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon[J]. Applied Physics Letters, 2018, 113(22): 221103. [49] WEI W Q, FENG Q, GUO J J, et al. InAs/GaAs quantum dot narrow ridge lasers epitaxially grown on SOI substrates for silicon photonic integration[J]. Optics Express, 2020, 28(18): 26555-26563. [50] CHEN W R, ZHU L N, WU G F, et al. Theoretical and experimental study on epitaxial growth of antiphase boundary free GaAs on hydrogenated on-axis Si(001) surfaces[J]. Journal of Physics D Applied Physics, 2021, 54(44): 445102. [51] LI K S, YANG J J, LU Y, et al. Inversion boundary annihilation in GaAs monolithically grown on on-axis silicon (001)[J]. Advanced Optical Materials, 2020, 8(22): 2000970. [52] LI Q, NG K W, LAU K M. Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon[J]. Applied Physics Letters, 2015, 106(7): 072105. [53] WAN Y T, LI Q, GENG Y, et al. InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 μm band[J]. Applied Physics Letters, 2015, 107(8): 081106. [54] LIU A Y, PETERS J, HUANG X, et al. Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si[J]. Optics Letters, 2017, 42(2): 338-341. [55] JUNG D, NORMAN J, KENNEDY M J, et al. High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si[J]. Applied Physics Letters, 2017, 111(12): 122107. [56] CHEN S, LIAO M, TANG M, et al. Electrically pumped continuous-wave 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates[J]. Optics Express, 2017, 25(5): 4632-4639. [57] SHANG C, WAN Y T, NORMAN J C, et al. Low-threshold epitaxially grown 1.3-μm InAs quantum dot lasers on patterned (001) Si[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6): 1-7. [58] SHANG C, HUGHES E, WAN Y, et al. High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters[J]. Optica, 2021, 8(5): 749-754. [59] WANG J, LIU Z L, LIU H, et al. High slope-efficiency quantum-dot lasers grown on planar exact silicon (001) with asymmetric waveguide structures[J]. Optics Express, 2022, 30(7): 11563-11571. [60] ALESHKIN V Y, BAIDUS N V, DUBINOV A A, et al. Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si(001) substrate[J]. Applied Physics Letters, 2016, 109(6): 061111. [61] SHI B, ZHAO H W, WANG L, et al. Continuous-wave electrically pumped 1550 nm lasers epitaxially grown on on-axis (001) silicon[J]. Optica, 2019, 6(12): 1507-1514. [62] JIANG C, LIU H, WANG J, et al. Demonstration of room-temperature continuous-wave operation of InGaAs/AlGaAs quantum well lasers directly grown on on-axis silicon (001)[J]. Applied Physics Letters, 2022, 121(6): 061102. [63] LI Y, SALVIATI G, BONGERS M M G, et al. On the formation of antiphase domains in the system of GaAs on Ge[J]. Journal of Crystal Growth, 1996, 163(3): 195-202. [64] 王 霆, 张建军, HUIYUN L. 硅基III-V族量子点激光器的发展现状和前景[J]. 物理学报, 2015(20): 204209. WANG T, ZHANG J J, HUIYUN L. Development status and prospect of silicon-based III-V quantum dot lasers[J]. Acta Physica Sinica, 2015(20): 204209 (in Chinese). [65] ZHONG L, HOJO A, AIBA Y, et al. Atomic steps on a silicon (001) surface tilted toward an arbitrary direction[J]. Applied Physics Letters, 1996, 68(13): 1823-1825. [66] BRÜCKNER S, DÖSCHER H, KLEINSCHMIDT P, et al. Anomalous double-layer step formation on Si(100) in hydrogen process ambient[J]. Physical Review B, Condensed Matter, 2012, 86(19): 195310. [67] PAN S H, SHEN H, HANG Z, et al. Photoreflectance study of narrow-well strained-layer InxGa1-xAs/GaAs coupled multiple-quantum-well structures[J]. Physical Review B, Condensed Matter, 1988, 38(5): 3375-3382. [68] 吕尊仁, 张中恺, 王 虹, 等. 1.3 μm半导体量子点激光器的研究进展[J]. 中国激光, 2020, 47(7): 0701016. LV Z R, ZHANG Z K, WANG H, et al. Research progress on 1.3 μm semiconductor quantum-dot lasers[J]. Chinese Journal of Lasers, 2020, 47(7): 0701016 (in Chinese). [69] WANG J, HU H Y, YIN H Y, et al. 1.3 μm InAs/GaAs quantum dot lasers on silicon with GaInP upper cladding layers[J]. Photonics Research, 2018, 6(4): 321-325. [70] JUNG C, JÄGER R, GRABHERR M, et al. 4.8 mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes[J]. Electronics Letters, 1997, 33(21): 1790. [71] FENG M X, ZHANG S M, JIANG D S, et al. Thermal analysis of GaN laser diodes in a package structure[J]. Chinese Physics B, 2012, 21(8): 084209. [72] WANG Z Q, SHENG Z, LI H, et al. A thermal-optimal design of SOI-integrated microdisk lasers[J]. Optical and Quantum Electronics, 2015, 47(2): 453-461. [73] DYMENT J C, CHENG Y C, SPRINGTHORPE A J. Temperature dependence of spontaneous peak wavelength in GaAs and Ga1-xAlxAs electroluminescent layers[J]. Journal of Applied Physics, 1975, 46(4): 1739-1743. [74] 马博杰, 王 俊, 刘 昊, 等. 对称负极芯片结构改善硅基激光器性能研究[J]. 中国激光, 2023, 50(18): 1801004. MA B J, WANG J, LIU H, et al. Improved performances of lasers on silicon (001) with symmetrical cathode structures[J]. Chinese Journal of Lasers, 2023, 50(18): 1801004(in Chinese). [75] JUNG D, ZHANG Z Y, NORMAN J, et al. Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency[J]. ACS Photonics, 2018, 5(3): 1094-1100. [76] WAN Y T, SHANG C, NORMAN J, et al. Low threshold quantum dot lasers directly grown on unpatterned quasi-nominal (001) Si[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(2): 1-9. |