[1] QIAN J, VORONIN G, ZERDA T W, et al. High-pressure, high-temperature sintering of diamond-SiC composites by ball-milled diamond-Si mixtures[J]. Journal of Materials Research, 2002, 17(8): 2153-2160. [2] CASADY J B, JOHNSON R W. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review[J]. Solid-State Electronics, 1996, 39(10): 1409-1422. [3] DAI S W, LEI H, FU J F. Preparation of SiC/SiO2 hard core-soft shell abrasive and its CMP behavior on sapphire substrate[J]. Journal of Electronic Materials, 2020, 49(2): 1301-1307. [4] HEYDEMANN V D, EVERSON W J, GAMBLE R D, et al. Chemi-mechanical polishing of on-axis semi-insulating SiC substrates[Z]. 10th International on Silicon Carbide and Related Materials (ICSCRM 2003), part2. Lyon, France. 2003: 805-8. [5] 李 娟, 陈秀芳, 马德营, 等. SiC单晶片的超精密加工[J]. 功能材料, 2006, 37(1): 70-72. LI J, CHEN X F, MA D Y, et al. High-prcesion processing of silicon carbide[J]. Journal of Functional Materials, 2006, 37(1): 70-72 (in Chinese). [6] 潘继生. 单晶SiC基片超精密磨粒加工机理研究[D]. 广州: 广东工业大学, 2015. PAN J S. Study on ultra-precision abrasive machining mechanism of single crystal SiC substrate[D]. Guangzhou: Guangdong University of Technology, 2015 (in Chinese). [7] 王 栋, 张银霞, 郜 伟, 等. SiC晶片研磨加工亚表面损伤深度的研究[J]. 人工晶体学报, 2014, 43(6): 1500-1503+1508. WANG D, ZHANG Y X, GAO W, et al. Study on the subsurface damage depth of the lapped SiC wafers[J]. Journal of Synthetic Crystals, 2014, 43(6): 1500-1503+1508 (in Chinese). [8] 郝晓丽, 苑泽伟, 温 泉, 等. 超声振动辅助研磨单晶碳化硅晶片工艺研究[J]. 金刚石与磨料磨具工程, 2022, 42(3): 268-274. HAO X L, YUAN Z W, WEN Q, et al. Process research on ultrasonic vibration assisted lapping of single crystal silicon carbide[J]. Diamond & Abrasives Engineering, 2022, 42(3): 268-274 (in Chinese). [9] 李洁静. SiC单晶基片固结磨粒摩擦化学机械研磨研究[D]. 新乡: 河南科技学院, 2019. LI J J. Study on friction chemical mechanical polishing of SiC single crystal substrate with fixed abrasive particles[D]. Xinxiang: Henan Institute of Science and Technology, 2019 (in Chinese). [10] MARISCAL J C, MCALLISTER J, SAMPURNO Y, et al. Insights into tungsten chemical mechanical planarization: part I. surface micro-texture evolution during pad break-In[J]. ECS Journal of Solid State Science and Technology, 2019, 8(5): P3091-P3097. [11] MCALLISTER J, STUFFLE C, SAMPURNO Y, et al. Effect of conditioner type and downforce, and pad surface micro-texture on SiO2 chemical mechanical planarization performance[J]. Micromachines, 2019, 10(4): 258. [12] 章 平. IC-1000聚氨酯抛光垫的摩擦磨损行为及其影响机制研究[D]. 无锡: 江南大学, 2022. ZHANG P. Study on friction and wear behavior of IC-1000 polyurethane polishing pad and its influencing mechanism[D]. Wuxi: Jiangnan University, 2022 (in Chinese). [13] 张春翔, 陈亚楠, 田 原, 等. 抛光垫使用寿命对硅单晶片抛光质量影响的研究[J]. 天津科技, 2015, 42(12): 18-19+23. ZHANG C X, CHEN Y N, TIAN Y, et al. Influence of service life of polishing pad on the quality of polished silicon wafers[J]. Tianjin Science & Technology, 2015, 42(12): 18-19+23 (in Chinese). |