[1] JIANG J, WEN Y, WANG H, et al. Recent advances in 2D materials for photodetectors[J]. Advanced Electronic Materials, 2021, 7(7): 2001125. [2] WANG G Y, ZHANG Y Z, YOU C Y, et al. Two dimensional materials based photodetectors[J]. Infrared Physics & Technology, 2018, 88: 149-173. [3] 刘彩云, 高 伟, 殷 红. 立方氮化硼的研究进展[J]. 人工晶体学报, 2022, 51(5): 781-800. LIU C Y, GAO W, YIN H. Research progress of cubic boron nitride[J]. Journal of Synthetic Crystals, 2022, 51(5): 781-800 (in Chinese) [4] 武 成, 王 燕, 李坚富, 等. 六方、立方氮化硼的制备和热传导性质研究进展[J]. 铸造技术, 2023, 44(1): 1-8. WU C, WANG Y, LI J F, et al. Research progress on the preparation and thermal conductivity properties of hexagonal and cubic boron nitride[J]. Foundry Technology, 2023, 44(1): 1-8 (in Chinese). [5] 齐 越, 王俊强, 朱泽华, 等. 石墨烯及石墨烯/氮化硼的电子结构特性研究[J]. 人工晶体学报, 2022, 51(4): 620-627+636. QI Y, WANG J Q, ZHU Z H, et al. Electronic structure properties of graphene and graphene/boron nitride[J]. Journal of Synthetic Crystals, 2022, 51(4): 620-627+636 (in Chinese). [6] 杨珏晗, 魏钟鸣, 牛智川. 基于二维材料异质结的光探测器研究进展[J]. 人工晶体学报, 2020, 49(3): 379-397. YANG J H, WEI Z M, NIU Z C. Recent progress on two-dimensional heterostructure based photodetectors[J]. Journal of Synthetic Crystals, 2020, 49(3): 379-397 (in Chinese). [7] CHEN H Y, LIU K W, HU L F, et al. New concept ultraviolet photodetectors[J]. Materials Today, 2015, 18(9): 493-502. [8] SANG L W, LIAO M Y, SUMIYA M. A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures[J]. Sensors, 2013, 13(8): 10482-10518. [9] XIE C, LU X T, TONG X W, et al. Recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors[J]. Advanced Functional Materials, 2019, 29(9): 1806006. [10] KALRA A, MUAZZAM U U, MURALIDHARAN R, et al. The road ahead for ultrawide bandgap solar-blind UV photodetectors[J]. Journal of Applied Physics, 2022, 131(15): 150901. [11] 辛凯耀, 杨 文, 夏建白, 等. 超宽禁带二维半导体材料与器件研究进展[J]. 中国科学: 物理学 力学 天文学, 2022, 52(9): 2-31. XIN K Y, YANG W, XIA J B, et al. Research progress of ultra-wide bandgap two-dimensional semiconductor materials and devices[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2022, 52(9): 2-31 (in Chinese). [12] 杨雅萍, 李 斌, 张长瑞, 等. 类石墨烯结构二维氮化硼材料: 结构特性、合成方法、性能及应用[J]. 材料导报, 2016, 30(11): 143-148. YANG Y P, LI B, ZHANG C R, et al. The morphology, synthesis, properties, and applications of graphene-like two-dimensional h-BN nanomaterials[J]. Materials Reports, 2016, 30(11): 143-148(in Chinese). [13] 张兴旺, 高孟磊, 孟军华. 介质衬底上生长h-BN二维原子晶体的研究进展[J]. 无机材料学报, 2019, 34(12): 1245-1256. ZHANG X W, GAO M L, MENG J H. Research progress of direct growth of two-dimensional hexagonal boron nitride on dielectric substrates[J]. Journal of Inorganic Materials, 2019, 34(12): 1245-1256(in Chinese). [14] CASSABOIS G, VALVIN P, GIL B. Hexagonal boron nitride is an indirect bandgap semiconductor[J]. Nature Photonics, 2016, 10(4): 262-266. [15] LI J, MAJETY S, DAHAL R, et al. Dielectric strength, optical absorption, and deep ultraviolet detectors of hexagonal boron nitride epilayers[J]. Applied Physics Letters, 2012, 101(17): 171112. [16] CAI Q R, SCULLION D, GAN W, et al. Outstanding thermal conductivity of single atomic layer isotope-modified boron nitride[J]. Physical Review Letters, 2020, 125(8): 085902. [17] CUI Z J, HE Y W, TIAN H, et al. Study of direct tunneling and dielectric breakdown in molecular beam epitaxial hexagonal boron nitride monolayers using metal-insulator-metal devices[J]. ACS Applied Electronic Materials, 2020, 2(3): 747-755. [18] LIN Y, WILLIAMS T V, CONNELL J. Soluble, exfoliated hexagonal boron nitride nanosheets[J]. Journal of Physical Chemistry Letters, 2010, 1: 277-283. [19] CHEN X, TAN C B, LIU X H, et al. Growth of hexagonal boron nitride films on silicon substrates by low-pressure chemical vapor deposition[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(3): 3713-3719. [20] LI Y Q, LIN Z G, ZHENG W, et al. Micron-thick hexagonal boron nitride crystalline film for vacuum ultraviolet photodetection with improved sensitivity and spectral response[J]. ACS Applied Electronic Materials, 2021, 3(9): 3774-3780. [21] LIU H, MENG J H, ZHANG X W, et al. High-performance deep ultraviolet photodetectors based on few-layer hexagonal boron nitride[J]. Nanoscale, 2018, 10(12): 5559-5565. [22] CAI Z Y, LIU B L, ZOU X L, et al. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures[J]. Chemical Reviews, 2018, 118(13): 6091-6133. [23] AKINWANDE D, PETRONE N, HONE J. Two-dimensional flexible nanoelectronics[J]. Nature Communications, 2014, 5: 5678. [24] 吴 靖, 谭海云, 史宇超, 等. 基于石墨烯和氮化硼的高性能电容器[J]. 上海交通大学学报, 2022, 56(10): 1325-1333. WU J, TAN H Y, SHI Y C, et al. High performance capacitors based on graphene and boron nitride[J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1325-1333 (in Chinese). [25] ZHANG H L, LAN Y, QIU S Y, et al. Flexible and stretchable microwave electronics: past, present, and future perspective[J]. Advanced Materials Technologies, 2020, 6(1): 2000759. [26] WANG G K, MENG J H, CHEN J R, et al. Epitaxy of hexagonal boron nitride thin films on sapphire for optoelectronics[J]. Crystal Growth & Design, 2022, 22(12): 7207-7214. [27] WU Z F, GUO L, CHENG K, et al. Room temperature synthesis of boron nitride thin films by dual-ion beam sputtering deposition[J]. Ceramics International, 2016, 42(3): 4171-4175. [28] GAO M L, MENG J H, CHEN Y N, et al. Catalyst-free growth of two-dimensional hexagonal boron nitride few-layers on sapphire for deep ultraviolet photodetectors[J]. Journal of Materials Chemistry C, 2019, 7(47): 14999-15006. [29] YANG Y H, WANG W L, ZHENG Y L, et al. Defect effect on the performance of nonpolar GaN-based ultraviolet photodetectors[J]. Applied Physics Letters, 2021, 118(5): 053501. [30] JIANG J, LING C Y, XU T, et al. Defect engineering for modulating the trap states in 2D photoconductors[J]. Advanced Materials, 2018, 30(40): 1804332. [31] ZHANG N F, SONG Y P, ZHOU K Y, et al. Enhanced performance of solar-blind photodetector of hexagonal boron nitride with bottom-contact electrodes[J]. AIP Advances, 2020, 10(8): 085013. [32] HAO J D, LI L, GAO P, et al. Boron nitride nanoribbons grown by chemical vapor deposition for VUV applications[J]. Micromachines, 2022, 13(9): 1372. [33] LI Y Q, GUO J M, ZHENG W, et al. Amorphous boron nitride for vacuum-ultraviolet photodetection[J]. Applied Physics Letters, 2020, 117(2): 023504. |