人工晶体学报 ›› 2023, Vol. 52 ›› Issue (5): 857-877.
屈鹏霏1,2, 金鹏1,2, 周广迪1,2, 王镇1,2, 许敦洲1,2, 吴巨1, 郑红军1, 王占国1,2
收稿日期:
2023-03-20
出版日期:
2023-05-15
发布日期:
2023-06-05
通信作者:
金 鹏,博士,研究员。E-mail:pengjin@semi.ac.cn
作者简介:
屈鹏霏(1997—),男,陕西省人,博士研究生。E-mail:qupf@semi.ac.cn
基金资助:
QU Pengfei1,2, JIN Peng1,2, ZHOU Guangdi1,2, WANG Zhen1,2, XU Dunzhou1,2, WU Ju1, ZHENG Hongjun1, WANG Zhanguo1,2
Received:
2023-03-20
Online:
2023-05-15
Published:
2023-06-05
摘要: 金刚石优异的物理性质使其成为下一代最有发展潜力的半导体材料之一。目前来看,基于微波等离子体化学气相沉积的异质外延可能是未来制备大尺寸单晶金刚石的最佳方法。在过去的三十年间,铱复合衬底上异质外延生长单晶金刚石取得了一定进展,特别是近几年实现了2英寸(1英寸=2.54 cm)以上的大尺寸自支撑单晶金刚石的生长。本文总结了金刚石异质外延用的衬底,简要介绍了异质衬底上的偏压增强成核,详细介绍了目前最成功的铱/氧化物、铱/氧化物层/硅复合衬底,最后对金刚石异质衬底和异质外延进行了总结,指出目前存在的问题并给出了一些可能的解决思路。
中图分类号:
屈鹏霏, 金鹏, 周广迪, 王镇, 许敦洲, 吴巨, 郑红军, 王占国. 单晶金刚石异质外延用铱复合衬底研究现状[J]. 人工晶体学报, 2023, 52(5): 857-877.
QU Pengfei, JIN Peng, ZHOU Guangdi, WANG Zhen, XU Dunzhou, WU Ju, ZHENG Hongjun, WANG Zhanguo. Research Status of Iridium-Based Composite Substrates for Heteroepitaxy of Single Crystal Diamond[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(5): 857-877.
[1] 金 鹏. 半导体金刚石材料与功率电子器件[M]//沈波, 唐宁. 宽禁带半导体电子材料与器件. 北京: 科学出版社, 2021: 236-279. JIN P. Semiconductor diamond materials and power electronic devices[M]//SHEN B, TANG N. Wide bandgap semiconductor electronic materials and devices. Beijing: Science Press, 2021: 236-279. [2] ISBERG J, HAMMERSBERG J, JOHANSSON E, et al. High carrier mobility in single-crystal plasma-deposited diamond[J]. Science, 2002, 297(5587): 1670-1672. [3] AKIMOTO I, HANDA Y, FUKAI K, et al. High carrier mobility in ultrapure diamond measured by time-resolved cyclotron resonance[J]. Applied Physics Letters, 2014, 105(3): 032102. [4] INYUSHKIN A V, TALDENKOV A N, RALCHENKO V G, et al. Thermal conductivity of high purity synthetic single crystal diamonds[J]. Physical Review B, 2018, 97(14): 144305. [5] WORT C J H, BALMER R S. Diamond as an electronic material[J]. Materials Today, 2008, 11(1/2): 22-28. [6] FENG M Y, JIN P, MENG X Q, et al. Performance of metal-semiconductor-metal structured diamond deep-ultraviolet photodetector with a large active area[J]. Journal of Physics D: Applied Physics, 2022, 55(40): 404005. [7] MENDOZA F, MAKAROV V, WEINER B R, et al. Solar-blind field-emission diamond ultraviolet detector[J]. Applied Physics Letters, 2015, 107(20): 201605. [8] TRISCHUK W. Diamond particle detectors for high energy physics[J]. Nuclear and Particle Physics Proceedings, 2016, 273/274/275: 1023-1028. [9] WILLIAMS R J, KITZLER O, BAI Z X, et al. High power diamond Raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1-14. [10] PEZZAGNA S, MEIJER J. Quantum computer based on color centers in diamond[J]. Applied Physics Reviews, 2021, 8(1): 011308. [11] MAKITA M, KARVINEN P, GUZENKO V A, et al. Fabrication of diamond diffraction gratings for experiments with intense hard X-rays[J]. Microelectronic Engineering, 2017, 176: 75-78. [12] BUNDY F P, HALL H T, STRONG H M, et al. Man-made diamonds[J]. Nature, 1955, 176(4471): 51-55. [13] MATSUMOTO S, SATO Y, TSUTSUMI M, et al. Growth of diamond particles from methane-hydrogen gas[J]. Journal of Materials Science, 1982, 17(11): 3106-3112. [14] YAMADA H, CHAYAHARA A, UMEZAWA H, et al. Fabrication and fundamental characterizations of tiled clones of single-crystal diamond with 1-inch size[J]. Diamond and Related Materials, 2012, 24: 29-33. [15] YAMADA H, CHAYAHARA A, MOKUNO Y, et al. A 2-in. mosaic wafer made of a single-crystal diamond[J]. Applied Physics Letters, 2014, 104(10): 102110. [16] YAMADA H, CHAYAHARA A, MOKUNO Y, et al. Uniform growth and repeatable fabrication of inch-sized wafers of a single-crystal diamond[J]. Diamond and Related Materials, 2013, 33: 27-31. [17] MATSUSHITA A, FUJIMORI N, TSUCHIDA Y, et al. Evaluation of diamond mosaic wafer crystallinity by electron backscatter diffraction[J]. Diamond and Related Materials, 2020, 101: 107558. [18] SCHRECK M, GSELL S, BRESCIA R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers[J]. Scientific Reports, 2017, 7(1): 1-8. [19] KOIZUMI S, INUZUKA T. Initial growth process of epitaxial diamond thin films on cBN single crystals[J]. Japanese Journal of Applied Physics, 1993, 32(9R): 3920. [20] KOIZUMI S, MURAKAMI T, INUZUKA T, et al. Epitaxial growth of diamond thin films on cubic boron nitride{111}surfaces by dc plasma chemical vapor deposition[J]. Applied Physics Letters, 1990, 57(6): 563-565. [21] INUZUKA T, KOIZUMI S, SUZUKI K. Epitaxial growth of diamond thin films on foreign substrates[J]. Diamond and Related Materials, 1992, 1(2/3/4): 175-179. [22] WANG L, PIROUZ P, ARGOITIA A, et al. Heteroepitaxially grown diamond on a c-BN{111}surface[J]. Applied Physics Letters, 1993, 63(10): 1336-1338. [23] YOSHIMOTO M, YOSHIDA K, MARUTA H, et al. Epitaxial diamond growth on sapphire in an oxidizing environment[J]. Nature, 1999, 399(6734): 340-342. [24] WOLTER S D, MCCLURE M T, GLASS J T, et al. Bias-enhanced nucleation of highly oriented diamond on titanium carbide (111) substrof diamond films on copper[J]. Journal of Materials Research, 1994, 9(4): 921-926. [25] HARTSELL M L, PIANO L S. Growth of diamond films on copper[J]. Journal of Materials Research, 1994, 9(4): 921-926. [26] FAN Q H, GRACIO J, PEREIRA E. Free-standing diamond film preparation using copper substrate[J]. Diamond and Related Materials, 1997, 6(2/3/4): 422-425. [27] ZHU W, YANG P C, GLASS J T. Oriented diamond films grown on nickel substrates[J]. Applied Physics Letters, 1993, 63(12): 1640-1642. [28] SATO Y, FUJITA H, ANDO T, et al. Local epitaxial growth of diamond on nickel from the vapour phase[J]. Philosophical Transactions of the Royal Society of London Series A: Physical and Engineering Sciences, 1993, 342(1664): 225-231. [29] SITAR Z, LIU W, YANG P C, et al. Heteroepitaxial nucleation of diamond on nickel[J]. Diamond and Related Materials, 1998, 7(2/3/4/5): 276-282. [30] YANG P C, LIU W, SCHLESSER R, et al. Surface melting in the heteroepitaxial nucleation of diamond on Ni[J]. Journal of Crystal Growth, 1998, 187(1): 81-88. [31] LIU W, TUCKER D A, YANG P C, et al. Nucleation of oriented diamond particles on cobalt substrates[J]. Journal of Applied Physics, 1995, 78(2): 1291-1296. [32] TACHIBANA T, YOKOTA Y, NISHIMURA K, et al. Heteroepitaxial diamond growth on platinum (111) by the Shintani process[J]. Diamond and Related Materials, 1996, 5(3/4/5): 197-199. [33] TACHIBANA T, YOKOTA Y, MIYATA K, et al. Diamond films heteroepitaxially grown on platinum (111)[J]. Physical Review B, 1997, 56(24): 15967-15981. [34] BAUER T, SCHRECK M, GSELL S, et al. Epitaxial rhenium buffer layers on Al2O3(0001): a substrate for the deposition of (111)-oriented heteroepitaxial diamond films[J]. Physica Status Solidi (a), 2003, 199(1): 19-26. [35] JIANG X, KLAGES C P, ZACHAI R, et al. Epitaxial diamond thin films on (001) silicon substrates[J]. Applied Physics Letters, 1993, 62(26): 3438-3440. [36] HESSMER R, SCHRECK M, GEIER S, et al. The influence of the growth process on the film texture of epitaxially nucleated diamond on silicon (001)[J]. Diamond and Related Materials, 1995, 4(4): 410-415. [37] JIA C L, URBAN K, JIANG X. Heteroepitaxial diamond films on silicon (001): interface structure and crystallographic relations between film and substrate[J]. Physical Review B, Condensed Matter, 1995, 52(7): 5164-5171. [38] JIANG X, KLAGES C P. Recent developments in heteroepitaxial nucleation and growth of diamond on silicon[J]. Physica Status Solidi (a), 1996, 154(1): 175-183. [39] STONER B R, GLASS J T. Textured diamond growth on (100) β-SiC via microwave plasma chemical vapor deposition[J]. Applied Physics Letters, 1992, 60(6): 698-700. [40] KOHL R, WILD C, HERRES N, et al. Oriented nucleation and growth of diamond films on β-SiC and Si[J]. Applied Physics Letters, 1993, 63(13): 1792-1794. [41] YAITA J, IWASAKI T, NATAL M, et al. Heteroepitaxial growth of diamond films on 3C-SiC/Si substrates with utilization of antenna-edge microwave plasma CVD for nucleation[J]. Japanese Journal of Applied Physics, 2015, 54(4S): 04DH13. [42] OHTSUKA K, SUZUKI K, SAWABE A, et al. Epitaxial growth of diamond on iridium[J]. Japanese Journal of Applied Physics, 1996, 35(8B): L1072. [43] OHTSUKA K, FUKUDA H, SUZUKI K, et al. Fabrication of epitaxial diamond thin film on iridium[J]. Japanese Journal of Applied Physics, 1997, 36(9A): L1214. [44] DAI Z, BEDNARSKI-MEINKE C, GOLDING B. Heteroepitaxial diamond film growth: the a-plane sapphire-iridium system[J]. Diamond and Related Materials, 2004, 13(4/5/6/7/8): 552-556. [45] SCHRECK M, ROLL H, STRITZKER B. Diamond/Ir/SrTiO3: a material combination for improved heteroepitaxial diamond films[J]. Applied Physics Letters, 1999, 74(5): 650-652. [46] LEE K H, SAADA S, ARNAULT J C, et al. Epitaxy of iridium on SrTiO3/Si (001): a promising scalable substrate for diamond heteroepitaxy[J]. Diamond and Related Materials, 2016, 66: 67-76. [47] GSELL S, BAUER T, GOLDFUß J, et al. A route to diamond wafers by epitaxial deposition on silicon via iridium/yttria-stabilized zirconia buffer layers[J]. Applied Physics Letters, 2004, 84(22): 4541-4543. [48] JACCODINE R J. Surface energy of germanium and silicon[J]. Journal of the Electrochemical Society, 1963, 110(6): 524. [49] OSHCHERIN B N. On surface energies of ANB8-N semiconducting compounds[J]. Physica Status Solidi (a), 1976, 34(2): K181-K186. [50] SWENSON C A. Recommended values for the thermal expansivity of silicon from 0 to 1000 K[J]. Journal of Physical and Chemical Reference Data, 1983, 12(2): 179-182. [51] LI Z, BRADT R C. Thermal expansion of the cubic (3C) polytype of SiC[J]. Journal of Materials Science, 1986, 21(12): 4366-4368. [52] SKRIVER H L, ROSENGAARD N M. Surface energy and work function of elemental metals[J]. Physical Review B, Condensed Matter, 1992, 46(11): 7157-7168. [53] KÖKTEN H, ERKOÇ Ş. Structural and electronic properties of c-BN(110) surface and surface point defects[J]. International Journal of Modern Physics C, 2006, 17(6): 795-803. [54] PRELAS M A, GIELISSE P, POPOVICI G, et al. Wide band gap electronic materials[M]. Dordrecht: Springer Netherlands, 1995. [55] HAYNES W M. CRC handbook of chemistry and physics[M]. Cleveland, Ohio: CRC Press, 2016. [56] IZYUMSKAYA N, DEMCHENKO D O, DAS S, et al. Recent development of boron nitride towards electronic applications[J]. Advanced Electronic Materials, 2017, 3(5): 1600485. [57] JACOBSON P, STOUPIN S. Thermal expansion coefficient of diamond in a wide temperature range[J]. Diamond and Related Materials, 2019, 97: 107469. [58] TOKO K, SUEMASU T. Metal-induced layer exchange of group IV materials[J]. Journal of Physics D: Applied Physics, 2020, 53(37): 373002. [59] LINNIK S A, ZENKIN S P, GAYDAYCHUK A V. Heteroepitaxial diamond growth from the gas phase: problems and prospects (review)[J]. Instruments and Experimental Techniques, 2021, 64(2): 177-189. [60] JIANG X, SCHIFFMANN K, KLAGES C P, et al. Coalescence and overgrowth of diamond grains for improved heteroepitaxy on silicon (001)[J]. Journal of Applied Physics, 1998, 83(5): 2511-2518. [61] YAITA J, NATAL M, SADDOW S E, et al. Influence of high-power density plasma on heteroepitaxial diamond nucleation on 3C-SiC surface[J]. Applied Physics Express, 2017, 10(4): 045502. [62] VERSTRAETE M J, CHARLIER J C. Why is iridium the best substrate for single crystal diamond growth?[J]. Applied Physics Letters, 2005, 86(19): 191917. [63] WANG Y, WANG W H, SHU G Y, et al. Virtues of Ir(100) substrate on diamond epitaxial growth: first-principle calculation and XPS study[J]. Journal of Crystal Growth, 2021, 560/561: 126047. [64] GHIRINGHELLI L M, LOS J H, MEIJER E J, et al. Modeling the phase diagram of carbon[J]. Physical Review Letters, 2005, 94(14): 145701. [65] GOODWIN D G. Scaling laws for diamond chemical-vapor deposition. I. Diamond surface chemistry[J]. Journal of Applied Physics, 1993, 74(11): 6888-6894. [66] BRUNE H. Growth modes[M]//Encyclopedia of Materials: Science and Technology. Amsterdam: Elsevier, 2001: 3683-3692. [67] LEE S T, LIN Z D, JIANG X. CVD diamond films: nucleation and growth[J]. Materials Science and Engineering: R: Reports, 1999, 25(4): 123-154. [68] BUTLER J E, WOODIN R L, BROWN L M, et al. Thin film diamond growth mechanisms[J]. Philosophical Transactions of the Royal Society of London Series A: Physical and Engineering Sciences, 1993, 342(1664): 209-224. [69] VIETZKE E, PHILIPPS V, FLASKAMP K, et al. The reaction of atomic hydrogen with a-C∶H and diamond films[J]. Surface and Coatings Technology, 1991, 47(1/2/3): 156-161. [70] STEKOLNIKOV A A, FURTHMÜLLER J, BECHSTEDT F. Absolute surface energies of group-IV semiconductors: dependence on orientation and reconstruction[J]. Physical Review B, 2002, 65(11): 115318. [71] JIANG X, KLAGES C P. Heteroepitaxial diamond growth on (100) silicon[J]. Diamond and Related Materials, 1993, 2(5/6/7): 1112-1113. [72] DAENEN M, WILLIAMS O A, D'HAEN J, et al. Seeding, growth and characterization of nanocrystalline diamond films on various substrates[J]. Physica Status Solidi (a), 2006, 203(12): 3005-3010. [73] YUGO S, KANAI T, KIMURA T, et al. Generation of diamond nuclei by electric field in plasma chemical vapor deposition[J]. Applied Physics Letters, 1991, 58(10): 1036-1038. [74] YUGO S, SEMOTO K, KIMURA T. The cause of suppression of the diamond nucleation density[J]. Diamond and Related Materials, 1996, 5(1): 25-28. [75] SCHRECK M, BAUR T, STRITZKER B. Optical characterization of the cathode plasma sheath during the biasing step for diamond nucleation on silicon[J]. Diamond and Related Materials, 1995, 4(5/6): 553-558. [76] KÁTAI S, KOVATS A, MAROS I, et al. Ion energy distributions and their evolution during bias-enhanced nucleation of chemical vapor deposition of diamond[J]. Diamond and Related Materials, 2000, 9(3/4/5/6): 317-321. [77] YUGO S, KIMURA T, KANAI T. Nucleation mechanisms of diamond in plasma chemical vapor deposition[J]. Diamond and Related Materials, 1993, 2(2/3/4): 328-332. [78] JIANG X, SCHIFFMANN K, KLAGES C. Nucleation and initial growth phase of diamond thin films on (100) silicon[J]. Physical Review B, Condensed Matter, 1994, 50(12): 8402-8410. [79] STONER B R, MA G, WOLTER S D, et al. Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy[J]. Physical Review B, Condensed Matter, 1992, 45(19): 11067-11084. [80] LIFSHITZ Y, KOHLER T, FRAUENHEIM T, et al. The mechanism of diamond nucleation from energetic species[J]. Science, 2002, 297(5586): 1531-1533. [81] SCHRECK M, BAUER T, GSELL S, et al. Domain formation in diamond nucleation on iridium[J]. Diamond and Related Materials, 2003, 12(3/4/5/6/7): 262-267. [82] GSELL S, SCHRECK M, BENSTETTER G, et al. Combined AFM-SEM study of the diamond nucleation layer on Ir(001)[J]. Diamond and Related Materials, 2007, 16(4/5/6/7): 665-670. [83] SCHRECK M, GSELL S, BRESCIA R, et al. Diamond nucleation on iridium: local variations of structure and density within the BEN layer[J]. Diamond and Related Materials, 2009, 18(2/3): 107-112. [84] SCHRECK M. Single crystal diamond growth on iridium[M]//Comprehensive Hard Materials. Amsterdam: Elsevier, 2014: 269-304. [85] BAUER T, SCHRECK M, HORMANN F, et al. Analysis of the total carbon deposition during the bias enhanced nucleation of diamond on Ir/SrTiO3 (001) using 13C-methane[J]. Diamond and Related Materials, 2002, 11(3/4/5/6): 493-498. [86] GSELL S, BERNER S, BRUGGER T, et al. Comparative electron diffraction study of the diamond nucleation layer on Ir(001)[J]. Diamond and Related Materials, 2008, 17(7/8/9/10): 1029-1034. [87] BRESCIA R, SCHRECK M, GSELL S, et al. Transmission electron microscopy study of the very early stages of diamond growth on iridium[J]. Diamond and Related Materials, 2008, 17(7/8/9/10): 1045-1050. [88] AIDA H, KIM S W, IKEJIRI K, et al. Microneedle growth method as an innovative approach for growing freestanding single crystal diamond substrate: detailed study on the growth scheme of continuous diamond layers on diamond microneedles[J]. Diamond and Related Materials, 2017, 75: 34-38. [89] DAI Z, LI A P, BEDNARSKI C, et al. Epitaxial iridium growth on strontium titanate[J]. MRS Online Proceedings Library, 2000, 648(1): 1135. [90] BENSALAH H, STENGER I, SAKR G, et al. Mosaicity, dislocations and strain in heteroepitaxial diamond grown on iridium[J]. Diamond and Related Materials, 2016, 66: 188-195. [91] KIM S W, TAKAYA R, HIRANO S, et al. Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire (1120) misoriented substrate by step-flow mode[J]. Applied Physics Express, 2021, 14(11): 115501. [92] DAI Z, BEDNARSKI-MEINKE C, LOLOEE R, et al. Epitaxial (100) iridium on A-plane sapphire: a system for wafer-scale diamond heteroepitaxy[J]. Applied Physics Letters, 2003, 82(22): 3847-3849. [93] LEE S T, LIFSHITZ Y. The Road to diamond wafers[J]. Nature, 2003, 424(6948): 500-501. [94] WANG Q J, WU G, NEWHOURSE-ILLIGE T A, et al. Heteroepitaxial diamond film deposition on KTaO3 substrates via single-crystal iridium buffer layers[J]. Diamond and Related Materials, 2020, 110: 108117. [95] ISHIDA J, YAMADA T, SAWABE A, et al. Large remanent polarization and coercive force by 100% 180° domain switching in epitaxial Pb(Zr0.5Ti0.5)O3 capacitor[J]. Applied Physics Letters, 2002, 80(3): 467-469. [96] ISHIKAWA T, ABE Y, SHINKAI S, et al. Epitaxial Ir thin film on (001) MgO single crystal prepared by sputtering[J]. Japanese Journal of Applied Physics, 2003, 42(Part 1, No. 9A): 5747-5748. [97] TRUPINA L, NEDELCU L, BANCIU M G, et al. Texture and interface characterization of iridium thin films grown on MgO substrates with different orientations[J]. Journal of Materials Science, 2020, 55(4): 1753-1764. [98] HUO X D, ZHOU G D, FENG M Y, et al. Effects of deposition time on growth of Ir buffer layer on MgO(100) support layer by magnetron sputtering[J]. Results in Physics, 2021, 30: 104878. [99] SAITO T, TSURUGA S, OHYA N, et al. Epitaxial nucleation of diamond on an iridium substrate by bias treatment, for microwave plasma-assisted chemical vapor deposition[J]. Diamond and Related Materials, 1998, 7(9): 1381-1384. [100] SUZUKI K, FUKUDA H, YAMADA T, et al. Epitaxially grown free-standing diamond platelet[J]. Diamond and Related Materials, 2001, 10(12): 2153-2156. [101] ANDO Y, KUWABARA J, SUZUKI K, et al. Patterned growth of heteroepitaxial diamond[J]. Diamond and Related Materials, 2004, 13(11/12): 1975-1979. [102] ANDO Y, KANEKO M, SUZUKI K, et al. Fabrication of free-standing diamond platelet by patterned heteroepitaxial growth[J]. New Diamond and Frontier Carbon Technology, 2006, 16(2): 71-78. [103] YOSHIKAWA T, KODAMA H, KONO S, et al. Wafer bowing control of free-standing heteroepitaxial diamond (100) films grown on Ir(100) substrates via patterned nucleation growth[J]. Thin Solid Films, 2015, 594: 120-128. [104] WASHIYAMA S, MITA S, SUZUKI K, et al. Coalescence of epitaxial lateral overgrowth-diamond on stripe-patterned nucleation on Ir/MgO(001)[J]. Applied Physics Express, 2011, 4(9): 095502. [105] ICHIKAWA K, KODAMA H, SUZUKI K, et al. Dislocation in heteroepitaxial diamond visualized by hydrogen plasma etching[J]. Thin Solid Films, 2016, 600: 142-145. [106] ICHIKAWA K, KODAMA H, SUZUKI K, et al. Effect of stripe orientation on dislocation propagation in epitaxial lateral overgrowth diamond on Ir[J]. Diamond and Related Materials, 2017, 72: 114-118. [107] ICHIKAWA K, KURONE K, KODAMA H, et al. High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir[J]. Diamond and Related Materials, 2019, 94: 92-100. [108] AIDA H, IKEJIRI K, KIM S W, et al. Overgrowth of diamond layers on diamond microneedles: new concept for freestanding diamond substrate by heteroepitaxy[J]. Diamond and Related Materials, 2016, 66: 77-82. [109] AIDA H, KIM S W, IKEJIRI K, et al. Fabrication of freestanding heteroepitaxial diamond substrate via micropatterns and microneedles[J]. Applied Physics Express, 2016, 9(3): 035504. [110] KASU M, TAKAYA R, KIM S W. Growth of high-quality inch-diameter heteroepitaxial diamond layers on sapphire substrates in comparison to MgO substrates[J]. Diamond and Related Materials, 2022, 126: 109086. [111] KASU M, TAKAYA R, MASAKI R, et al. Initial growth mechanism of high-quality CVD diamond on Ir/sapphire substrate compared with Ir/MgO substrate[J]. Diamond and Related Materials, 2022, 128: 109287. [112] HORMANN F, ROLL H, SCHRECK M, et al. Epitaxial Ir layers on SrTiO3 as substrates for diamond nucleation: deposition of the films and modification in the CVD environment[J]. Diamond and Related Materials, 2000, 9(3/4/5/6): 256-261. [113] KOSLOWSKI B, NOTZ R, ZIEMANN P. Epitaxial growth of iridium on strontium-titanate studied by in situ scanning tunneling microscopy[J]. Surface Science, 2002, 496(3): 153-159. [114] BEDNARSKI C, DAI Z, LI A P, et al. Studies of heteroepitaxial growth of diamond[J]. Diamond and Related Materials, 2003, 12(3/4/5/6/7): 241-245. [115] CHAVANNE A, ARNAULT J C, BARJON J, et al. Bias-enhanced nucleation of diamond on iridium: a comprehensive study of the first stages by sequential surface analysis[J]. Surface Science, 2011, 605(5/6): 564-569. [116] PECORARO S, LE NORMAND F, ARNAULT J C. Behaviour of textured Ir layers exposed to the HFCVD environment of diamond[J]. Surface Science, 2000, 461(1/2/3): 129-136. [117] ZENKIN S, GAYDAYCHUK A, LINNIK S. Effects of sputtering gas on the microstructure of Ir thin films deposited by HiPIMS and pulsed DC sputtering[J]. Surface and Coatings Technology, 2021, 412: 127038. [118] SCHRECK M, SCHURY A, HORMANN F, et al. Mosaicity reduction during growth of heteroepitaxial diamond films on iridium buffer layers: experimental results and numerical simulations[J]. Journal of Applied Physics, 2002, 91(2): 676-685. [119] HORMANN F, SCHRECK M, STRITZKER B. First stages of diamond nucleation on iridium buffer layers[J]. Diamond and Related Materials, 2001, 10(9/10): 1617-1621. [120] BRESCIA R, SCHRECK M, MICHLER J, et al. Interaction of small diamond islands on iridium: a finite element simulation study[J]. Diamond and Related Materials, 2007, 16(4/5/6/7): 705-710. [121] SCHRECK M, HORMANN F, GSELL S, et al. Transmission electron microscopy study of the diamond nucleation layer on iridium[J]. Diamond and Related Materials, 2006, 15(4/5/6/7/8): 460-464. [122] CHAVANNE A, ARNAULT J C, BARJON J, et al. Effect of bias voltage on diamond nucleation on iridium during BEN[C]//AIP Conference Proceedings, 2010, 1292(1): 137-140. [123] CHAVANNE A, BARJON J, VILQUIN B, et al. Surface investigations on different nucleation pathways for diamond heteroepitaxial growth on iridium[J]. Diamond and Related Materials, 2012, 22: 52-58. [124] VAISSIERE N, SAADA S, BOUTTEMY M, et al. Heteroepitaxial diamond on iridium: new insights on domain formation[J]. Diamond and Related Materials, 2013, 36: 16-25. [125] ZENKIN S, GAYDAYCHUK A, MITULINSKY A, et al. Cu-Ir thin film alloy as a potential substrate for the heteroepitaxial diamond growth[J]. Materials Letters, 2022, 321: 132441. [126] GOTO T, VARGAS R, HIRAI T. Preparation of iridium and platinum films by MOCVD and their properties[J]. Le Journal De Physique IV, 1993, 3(C3): C3-297. [127] VARGAS R, GOTO T, ZHANG W, et al. Epitaxial growth of iridium and platinum films on sapphire by metalorganic chemical vapor deposition[J]. Applied Physics Letters, 1994, 65(9): 1094-1096. [128] VARGAS GARCIA J R, GOTO T. Chemical vapor deposition of iridium, platinum, rhodium and palladium[J]. Materials Transactions, 2003, 44(9): 1717-1728. [129] WANG W H, YANG S L, HAN J C, et al. Role of surface chemistry in determining the heteroepitaxial growth of Ir films on a-plane α-Al2O3 single crystals[J]. Surfaces and Interfaces, 2022, 32: 102172. [130] SAMOTO A, ITO S, HOTTA A, et al. Investigation of heterostructure between diamond and iridium on sapphire[J]. Diamond and Related Materials, 2008, 17(7/8/9/10): 1039-1044. [131] MEYER F, OESER S, GRAFF A, et al. Effect of substrate bias on the growth behavior of iridium on A-plane sapphire using radio frequency sputtering at low temperatures[J]. Thin Solid Films, 2018, 650: 65-70. [132] CHOI U, SHIN H, KWAK T, et al. Growth and characterization of heteroepitaxial (001) and (111) diamond on Ir/sapphire structures[J]. Diamond and Related Materials, 2022, 121: 108770. [133] KIM S W, KAWAMATA Y, TAKAYA R, et al. Growth of high-quality one-inch free-standing heteroepitaxial (001) diamond on (1120) sapphire substrate[J]. Applied Physics Letters, 2020, 117(20): 202102. [134] DANGWAL PANDEY A, KRAUSERT K, FRANZ D, et al. Single orientation graphene synthesized on iridium thin films grown by molecular beam epitaxy[J]. Journal of Applied Physics, 2016, 120(7): 075304. [135] HAMALAINEN J, KEMELL M, MUNNIK F, et al. Atomic layer deposition of iridium oxide thin films from Ir(acac)3 and ozone[J]. Chemistry of Materials, 2008, 20(9): 2903-2907. [136] GOLDING B, BEDNARSKI-MEINKE C, DAI Z. Diamond heteroepitaxy: pattern formation and mechanisms[J]. Diamond and Related Materials, 2004, 13(4/5/6/7/8): 545-551. [137] TANG Y H, BI B, GOLDING B. Diamond heteroepitaxial lateral overgrowth[J]. MRS Online Proceedings Library, 2014, 1734(1): 20-25. [138] TANG Y H, GOLDING B. Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth[J]. Applied Physics Letters, 2016, 108(5): 052101. [139] WU Y, QI J, LEE C H, et al. Diamond growth on Ir/CaF2/Si substrates[J]. Diamond and Related Materials, 2003, 12(10/11): 1675-1680. [140] BAUER T, GSELL S, SCHRECK M, et al. Growth of epitaxial diamond on silicon via iridium/SrTiO3 buffer layers[J]. Diamond and Related Materials, 2005, 14(3/4/5/6/7): 314-317. [141] TATSUYAMA T T. Molecular beam epitaxy of SrTiO3 films on Si(100)-2×1 with SrO buffer layer[J]. Japanese Journal of Applied Physics, 1998, 37(8R): 4454. [142] MCKEE R A, WALKER F J, CHISHOLM M F. Crystalline oxides on silicon: the first five monolayers[J]. Physical Review Letters, 1998, 81(14): 3014-3017. [143] LETTIERI J, HAENI J H, SCHLOM D G. Critical issues in the heteroepitaxial growth of alkaline-earth oxides on silicon[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2002, 20(4): 1332-1340. [144] NORGA G J, GUILLER A, MARCHIORI C, et al. Growth of perovskites with crystalline interfaces on Si(100)[J]. MRS Online Proceedings Library, 2003, 786(1): 73. [145] WEI Y, HU X M, LIANG Y, et al. Mechanism of cleaning Si(100) surface using Sr or SrO for the growth of crystalline SrTiO3 films[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2002, 20(4): 1402. [146] NIU G, SAINT-GIRONS G, VILQUIN B, et al. Molecular beam epitaxy of SrTiO3 on Si (001): early stages of the growth and strain relaxation[J]. Applied Physics Letters, 2009, 95(6): 062902. [147] CHOI M, POSADAS A, DARGIS R, et al. Strain relaxation in single crystal SrTiO3 grown on Si (001) by molecular beam epitaxy[J]. Journal of Applied Physics, 2012, 111(6): 064112. [148] LIANG Y, WEI Y, HU X M, et al. Heteroepitaxy of SrTiO3 on vicinal Si(001): growth and kinetic effects[J]. Journal of Applied Physics, 2004, 96(6): 3413-3416. [149] LEE K H, SAADA S, ARNAULT J C, et al. Effect of bias enhanced nucleation parameters on diamond heteroepitaxy on Ir/SrTiO3/Si (001)[C]//MRS Spring meeting 2016. Phoenix, United States, 2016. [150] LEE K H, SAADA S, TRANCHANT N, et al. Diamond heteroepitaxy on Ir/SrTiO3/Si (001) substrates: from nucleation to thick films characterizations[C]//28th international conference on diamond and related materials. Gothenborg, Sweden, 2017. [151] ARNAULT J C, LEE K H, DELCHEVALRIE J, et al. Epitaxial diamond on Ir/SrTiO3/Si (001): from sequential material characterizations to fabrication of lateral Schottky diodes[J]. Diamond and Related Materials, 2020, 105: 107768. [152] DUWEZ P, BROWN F H, ODELL F. The zirconia-yttria system[J]. Journal of the Electrochemical Society, 1951, 98(9): 356. [153] MORITA M, FUKUMOTO H, IMURA T, et al. Growth of crystalline zirconium dioxide films on silicon[J]. Journal of Applied Physics, 1985, 58(6): 2407-2409. [154] LEGAGNEUX P, GARRY G, DIEUMEGARD D, et al. Epitaxial growth of yttria-stabilized zirconia films on silicon by ultrahigh vacuum ion beam sputter deposition[J]. Applied Physics Letters, 1988, 53(16): 1506-1508. [155] FORK D K, FENNER D B, CONNELL G A N, et al. Epitaxial yttria-stabilized zirconia on hydrogen-terminated Si by pulsed laser deposition[J]. Applied Physics Letters, 1990, 57(11): 1137-1139. [156] DUBBINK D, KOSTER G, RIJNDERS G. Growth mechanism of epitaxial YSZ on Si by pulsed laser deposition[J]. Scientific Reports, 2018, 8(1): 1-10. [157] SU Q X, LI L, ZHAO Y Y, et al. Epitaxial growth of yttria-stabilized zirconia films on silicon by R.F. magnetron sputtering[J]. Modern Physics Letters B, 1991, 5(27): 1829-1835. [158] HORITA S, ABE Y, KAWADA T. Heteroepitaxial growth of yttria-stabilized zirconia film on oxidized silicon by reactive sputtering[J]. Thin Solid Films, 1996, 281/282: 28-31. [159] FUKUMOTO H, IMURA T, OSAKA Y. Heteroepitaxial growth of yttria-stabilized zirconia (YSZ) on silicon[J]. Japanese Journal of Applied Physics, 1988, 27(8A): L1404. [160] ZHOU G D, JIN P, WANG Y, et al. X-ray diffraction analysis of the yttria stabilized zirconia powder by mechanical alloying and sintering[J]. Ceramics International, 2020, 46(7): 9691-9697. [161] BARDAL A, MATTHEE T, WECKER J, et al. Initial stages of epitaxial growth of Y-stabilized ZrO2 thin films on a substrates[J]. Journal of Applied Physics, 1994, 75(6): 2902-2910. [162] JIA Q X, WU X D, ZHOU D S, et al. Deposition of epitaxial yttria-stabilized zirconia on single-crystal Si and subsequent growth of an amorphous SiO2 interlayer[J]. Philosophical Magazine Letters, 1995, 72(6): 385-391. [163] WANG S J, ONG C K, YOU L P, et al. Epitaxial growth of yittria-stabilized zirconia oxide thin film on natively oxidized silicon wafer without an amorphous layer[J]. Semiconductor Science and Technology, 2000, 15(8): 836-839. [164] WANG S J, ONG C K. Epitaxial Y-stabilized ZrO2 films on silicon: dynamic growth process and interface structure[J]. Applied Physics Letters, 2002, 80(14): 2541-2543. [165] HATA T, SASAKI K, ICHIKAWA Y, et al. Yttria-stabilized zirconia (YSZ) heteroepitaxially grown on Si substrates by reactive sputtering[J]. Vacuum, 2000, 59(2/3): 381-389. [166] KANEKO S, AKIYAMA K, ITO T, et al. Single domain epitaxial growth of yttria-stabilized zirconia on Si(111) substrate[J]. Ceramics International, 2008, 34(4): 1047-1050. [167] JIANG J, SHEN W D, HERTZ J L. Fabrication of epitaxial zirconia and ceria thin films with arbitrary dopant and host atom composition[J]. Thin Solid Films, 2012, 522: 66-70. [168] MIZUTANI N, WAKIYA N, HIJIKATA M Y K, et al. Preparation of epitaxial YSZ thin film on Si(001) using metal and oxide targets by RF-magnetron sputtering[J]. Ferroelectrics, 2001, 260(1): 249-254. [169] BUNT P, VARHUE W J, ADAMS E, et al. Initial stages of growth of heteroepitaxial yttria-stabilized zirconia films on silicon substrates[J]. Journal of the Electrochemical Society, 2000, 147(12): 4541. [170] QU P F, JIN P, ZHOU G D, et al. Epitaxial growth of high-quality yttria-stabilized zirconia films with uniform thickness on silicon by the combination of PLD and RF sputtering[J]. Surface and Coatings Technology, 2023, 456: 129267. [171] KHOA T D, HORII S, HORITA S. High deposition rate of epitaxial (100) Iridium film on (100)YSZ/(100)Si substrate by RF sputtering deposition[J]. Thin Solid Films, 2002, 419(1/2): 88-94. [172] FISCHER M, GSELL S, SCHRECK M, et al. Preparation of 4-inch Ir/YSZ/Si(001) substrates for the large-area deposition of single-crystal diamond[J]. Diamond and Related Materials, 2008, 17(7/8/9/10): 1035-1038. [173] FAN L S, JACOBS C B, ROULEAU C M, et al. Stabilizing Ir(001) epitaxy on yttria-stabilized zirconia using a thin Ir seed layer grown by pulsed laser deposition[J]. Crystal Growth & Design, 2017, 17(1): 89-94. [174] ZHOU G D, QU P F, HUO X D, et al. The deposition of Ir/YSZ double-layer thin films on silicon by PLD and magnetron sputtering: growth kinetics and the effects of oxygen[J]. Results in Physics, 2023, 47: 106357. [175] STEHL C, FISCHER M, GSELL S, et al. Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications[J]. Applied Physics Letters, 2013, 103(15): 151905. [176] SCHRECK M, MAYR M, KLEIN O, et al. Multiple role of dislocations in the heteroepitaxial growth of diamond: a brief review[J]. Physica Status Solidi (a), 2016, 213(8): 2028-2035. |
[1] | 彭博, 李奇, 张舒淼, 樊叔维, 王若铮, 王宏兴. 金刚石肖特基二极管的研究进展[J]. 人工晶体学报, 2023, 52(5): 732-745. |
[2] | 吴锐文, 宋华平, 杨军伟, 屈红霞, 赖晓芳. 基于聚氨酯垫的4H-SiC单晶衬底研磨性质研究[J]. 人工晶体学报, 2023, 52(5): 759-765. |
[3] | 王高凯, 张兴旺. 六方氮化硼外延生长研究进展[J]. 人工晶体学报, 2023, 52(5): 825-841. |
[4] | 韩钰, 牛群, 周琴, 赵爱迪. 单层α-MoO3半导体薄膜的范德瓦耳斯外延制备[J]. 人工晶体学报, 2023, 52(5): 886-893. |
[5] | 白玲, 宁静, 张进成, 王东, 王博宇, 武海迪, 赵江林, 陶然, 李忠辉. 多晶金刚石衬底范德瓦耳斯外延GaN薄膜[J]. 人工晶体学报, 2023, 52(5): 901-908. |
[6] | 黎少君, 姚悦, 陈俊明. SnS2气敏材料研究进展[J]. 人工晶体学报, 2023, 52(4): 701-709. |
[7] | 戚佳斌, 谢欣瑜, 李忠贤. 柔性无机铁电薄膜的制备及其在存储器领域应用研究进展[J]. 人工晶体学报, 2023, 52(3): 380-393. |
[8] | 李斌, 胡秀飞, 杨旖秋, 王英楠, 谢雪健, 彭燕, 杨祥龙, 王希玮, 胡小波, 徐现刚, 冯志红. 单晶金刚石声子非简谐衰减效应研究[J]. 人工晶体学报, 2023, 52(3): 442-451. |
[9] | 李振兴, 柏伟, 王琰璋, 刘江高, 张瑛侠, 折伟林. 大尺寸非规则碲锌镉晶片双面抛光技术[J]. 人工晶体学报, 2023, 52(2): 244-251. |
[10] | 谭黎, 张俊, 张敏, 赵荣力, 邓朝勇, 崔瑞瑞. 高温扩散工艺制备带隙可调的β-(AlxGa1-x)2O3薄膜[J]. 人工晶体学报, 2023, 52(2): 281-288. |
[11] | 贾元波, 满卫东, 伍正新, 梁凯, 林志东. 二氧化碳对同质外延生长单晶金刚石内应力的影响[J]. 人工晶体学报, 2023, 52(1): 34-40. |
[12] | 张瑞, 于文强. 高温扩散法制备B-S共掺杂单晶金刚石[J]. 人工晶体学报, 2023, 52(1): 41-47. |
[13] | 张玺, 朱如忠, 张序清, 王明华, 高煜, 王蓉, 杨德仁, 皮孝东. 磨料形貌及分散介质对4H碳化硅晶片研磨质量的影响研究[J]. 人工晶体学报, 2023, 52(1): 48-55. |
[14] | 金敏. 晶体人生丨介万奇:辐射探测半导体晶体拓荒者[J]. 人工晶体学报, 2022, 51(9-10): 1523-1526. |
[15] | 何峰, 白旭东, 陆欣昱, 郑树颍, 李荣斌, 刘学超, 魏天然, 史迅, 金敏. Ⅲ-Ⅵ族InSe半导体晶体生长研究进展[J]. 人工晶体学报, 2022, 51(9-10): 1722-1731. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||