[1] 李 亮, 李忠辉, 罗伟科, 等. 高质量GaN薄膜的MOCVD同质外延生长[J]. 人工晶体学报, 2013, 42(5): 915-917. LI L, LI Z H, LUO W K, et al. Homoepitaxial growth of high quality GaN films by MOCVD[J]. Journal of Synthetic Crystals, 2013, 42(5): 915-917 (in Chinese). [2] 周 浩, 徐 俞, 曹 冰, 等. 石墨烯上外延GaN薄膜的取向演变研究[J]. 人工晶体学报, 2020, 49(5): 794-798. ZHOU H, XU Y, CAO B, et al. Orientation evolution study of epitaxial GaN films on graphene[J]. Journal of Synthetic Crystals, 2020, 49(5): 794-798 (in Chinese). [3] NAKAMURA S. Current status of GaN-based solid-state lighting[J]. MRS Bulletin, 2009, 34(2): 101-107. [4] DENBAARS S P, FEEZELL D, KELCHNER K, et al. Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays[J]. Acta Materialia, 2013, 61(3): 945-951. [5] KUMAR K, SANTRA S B. Performance analysis of a three-phase propulsion inverter for electric vehicles using GaN semiconductor devices[J]. IEEE Transactions on Industry Applications, 2018, 54(6): 6247-6257. [6] ROCCAFORTE F, FIORENZA P, GRECO G, et al. Recent advances on dielectrics technology for SiC and GaN power devices[J]. Applied Surface Science, 2014, 301: 9-18. [7] OHNO Y, KUZUHARA M. Application of GaN-based heterojunction FETs for advanced wireless communication[J]. IEEE Transactions on Electron Devices, 2001, 48(3): 517-523. [8] KIM Y, CRUZ S S, LEE K, et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer[J]. Nature, 2017, 544(7650): 340-343. [9] JEONG J, WANG Q X, CHA J, et al. Remote heteroepitaxy of GaN microrod heterostructures for deformable light-emitting diodes and wafer recycle[J]. Science Advances, 2020, 6(23): eaaz5180. [10] JEONG J, JIN D K, CHOI J, et al. Transferable, flexible white light-emitting diodes of GaN p-n junction microcrystals fabricated by remote epitaxy[J]. Nano Energy, 2021, 86: 106075. [11] PARK J H, LEE J Y, PARK M D, et al. Influence of temperature-dependent substrate decomposition on graphene for separable GaN growth[J]. Advanced Materials Interfaces, 2019, 6(18): 1900821. [12] ZHU Y H, WANG M Y, SHI M, et al. Correlation on GaN epilayer quality and strain in GaN-based LEDs grown on 4-in. Si(111) substrate[J]. Superlattices and Microstructures, 2015, 85: 798-805. [13] KIM H, CHANG C S, LEE S, et al. Remote epitaxy[J]. Nature Reviews Methods Primers, 2022, 2(1): 1-21. [14] QU Y P, XU Y, CAO B, et al. Long-range orbital hybridization in remote epitaxy: the nucleation mechanism of GaN on different substrates via single-layer graphene[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 2263-2274. [15] KOVÁCS A, DUCHAMP M, DUNIN-BORKOWSKI R E, et al. Graphoepitaxy of high-quality GaN layers on graphene/6H-SiC[J]. Advanced Materials Interfaces, 2015, 2(2): 1400230. [16] ALASKAR Y, ARAFIN S, WICKRAMARATNE D, et al. Towards van der Waals epitaxial growth of GaAs on Si using a graphene buffer layer[J]. Advanced Functional Materials, 2014, 24(42): 6629-6638. [17] LIU J Q, WANG J F, LIU Y F, et al. High-resolution X-ray diffraction analysis on HVPE-grown thick GaN layers[J]. Journal of Crystal Growth, 2009, 311(10): 3080-3084. [18] CHEN J, WANG J F, WANG H, et al. Measurement of threading dislocation densities in GaN by wet chemical etching[J]. Semiconductor Science and Technology, 2006, 21(9): 1229-1235. [19] TARSA E J, HEYING B, WU X H, et al. Homoepitaxial growth of GaN under Ga-stable and N-stable conditions by plasma-assisted molecular beam epitaxy[J]. Journal of Applied Physics, 1997, 82(11): 5472-5479. [20] KAPOLNEK D, WU X H, HEYING B, et al. Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire[J]. Applied Physics Letters, 1995, 67(11): 1541-1543. [21] KIM J, BAYRAM C, PARK H, et al. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene[J]. Nature Communications, 2014, 5(1): 1-7. [22] ZHOU H, XU Y, CHEN X W, et al. Direct van der Waals epitaxy of stress-free GaN films on PECVD grown graphene[J]. Journal of Alloys and Compounds, 2020, 844: 155870. [23] CHEN Y, ZANG H, JIANG K, et al. Improved nucleation of AlN on in situ nitrogen doped graphene for GaN quasi-van der Waals epitaxy[J]. Applied Physics Letters, 2020, 117(5): 051601. [24] ZHANG Y C, SU K, GUO R, et al. Investigation of GaN with low threading dislocation density grown on graphene/sputtered AlN composite substrate[J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2019, 13(8): 1900167. |