[1] WEI L, KUO P K, THOMAS R L, et al. Thermal conductivity of isotopically modified single crystal diamond[J]. Physical Review Letters, 1993, 70(24): 3764-3767. [2] GRAY K J. Effective thermal conductivity of a diamond coated heat spreader[J]. Diamond and Related Materials, 2000, 9(2): 201-204. [3] WEBSTER R F, CHERNS D, KUBALL M, et al. Electron microscopy of gallium nitride growth on polycrystalline diamond[J]. Semiconductor Science and Technology, 2015, 30(11): 114007. [4] GRACIO J J, FAN Q H, MADALENO J C. Diamond growth by chemical vapour deposition[J]. Journal of Physics D: Applied Physics, 2010, 43(37): 374017. [5] WATSON I M. Metal organic vapour phase epitaxy of AlN, GaN, InN and their alloys: a key chemical technology for advanced device applications[J]. Coordination Chemistry Reviews, 2013, 257(13/14): 2120-2141. [6] DUSSAIGNE A, MALINVERNI M, MARTIN D, et al. GaN grown on (111) single crystal diamond substrate by molecular beam epitaxy[J]. Journal of Crystal Growth, 2009, 311(21): 4539-4542. [7] PLESKOV Y V. Electrochemistry of diamond: a review[J]. Russian Journal of Electrochemistry, 2002, 38(12): 1275-1291. [8] HIRAMA K, TANIYASU Y, KASU M. AlGaN/GaN high-electron mobility transistors with low thermal resistance grown on single-crystal diamond (111) substrates by metalorganic vapor-phase epitaxy[J]. Applied Physics Letters, 2011, 98(16): 162112. [9] ALOMARI M, DUSSAIGNE A, MARTIN D, et al. AlGaN/GaN HEMT on (111) single crystalline diamond[J]. Electronics Letters, 2010, 46(4): 299. [10] AHMED R, SIDDIQUE A, ANDERSON J, et al. Integration of GaN and diamond using epitaxial lateral overgrowth[J]. ACS Applied Materials & Interfaces, 2020, 12(35): 39397-39404. [11] MAY P W. Diamond thin films: a 21 st-century material[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2000, 358(1766): 473-495. [12] HAGEMAN P R, SCHERMER J J, LARSEN P K. GaN growth on single-crystal diamond substrates by metalorganic chemical vapour deposition and hydride vapour deposition[J]. Thin Solid Films, 2003, 443(1/2): 9-13. [13] MU F W, HE R, SUGA T. Room temperature GaN-diamond bonding for high-power GaN-on-diamond devices[J]. Scripta Materialia, 2018, 150: 148-151. [14] ABOU DAHER M, LESECQ M, TILMANT P, et al. AlGaN/GaN high electron mobility transistors on diamond substrate obtained through aluminum nitride bonding technology[J]. Journal of Vacuum Science & Technology B, 2020, 38(3): 033201. [15] KAHNG Y H, LEE S, CHOE M, et al. A study of graphene films synthesized on nickel substrates: existence and origin of small-base-area peaks[J]. Nanotechnology, 2011, 22(4): 045706. [16] LIEN D H, DURÃN RETAMAL J R, KE J J, et al. Surface effects in metal oxide-based nanodevices[J]. Nanoscale, 2015, 7(47): 19874-19884. [17] LU W, XIE P, LIEBER C M. Nanowire transistor performance limits and applications[J]. IEEE Transactions on Electron Devices, 2008, 55(11): 2859-2876. [18] YU J D, WANG L, HAO Z B, et al. Van der Waals epitaxy of III-nitride semiconductors based on 2D materials for flexible applications[J]. Advanced Materials, 2020, 32(15): 1903407. [19] KIM J, BAYRAM C, PARK H, et al. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene[J]. Nature Communications, 2014, 5(1): 1-7. [20] ZHOU H, XU Y, CHEN X W, et al. Direct van der Waals epitaxy of stress-free GaN films on PECVD grown graphene[J]. Journal of Alloys and Compounds, 2020, 844: 155870. [21] WU H D, NING J, JIA Y Q, et al. Van der Waals self-assembled silica-nanosphere/graphene buffer layer for high-quality gallium nitride growth[J]. Crystal Growth & Design, 2021, 21(10): 5848-5853. [22] YU J D, HAO Z B, DENG J, et al. Low-temperaturevan der Waals epitaxy of GaN films on graphene through AlN buffer by plasma-assisted molecular beam epitaxy[J]. Journal of Alloys and Compounds, 2021, 855: 157508. [23] KOMA A, SUNOUCHI K, MIYAJIMA T. Fabrication and characterization of heterostructures with subnanometer thickness[J]. Microelectronic Engineering, 1984, 2(1/2/3): 129-136. [24] KIM Y, CRUZ S S, LEE K, et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer[J]. Nature, 2017, 544(7650): 340-343. [25] NEPAL N, WHEELER V D, ANDERSON T J, et al. Epitaxial growth of III-nitride/graphene heterostructures for electronic devices[J]. Applied Physics Express, 2013, 6(6): 061003. [26] KONG W, LI H S, QIAO K, et al. Polarity governs atomic interaction through two-dimensional materials[J]. Nature Materials, 2018, 17(11): 999-1004. [27] JOURNOT T, OKUNO H, MOLLARD N, et al. Remote epitaxy using graphene enables growth of stress-free GaN[J]. Nanotechnology, 2019, 30(50): 505603. [28] CHEN Y, ZANG H, JIANG K, et al. Improved nucleation of AlN on in situ nitrogen doped graphene for GaN quasi-van der waals epitaxy[J]. Applied Physics Letters, 2020, 117(5): 051601. [29] SHEN X, WANG D, NING J, et al. MMA-enabled ultraclean graphene transfer for fast-response graphene/GaN ultraviolet photodetectors[J]. Carbon, 2020, 169: 92-98. [30] CHOI J K, HUH J H, KIM S D, et al. One-step graphene coating of heteroepitaxial GaN films[J]. Nanotechnology, 2012, 23(43): 435603. [31] KIM M H, DO Y G, KANG H C, et al. Effects of step-graded AlxGa1-xN interlayer on properties of GaN grown on Si(111) using ultrahigh vacuum chemical vapor deposition[J]. Applied Physics Letters, 2001, 79(17): 2713-2715. |