[1] CASADY J B, JOHNSON R W. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review[J]. Solid-State Electronics, 1996, 39(10): 1409-1422. [2] MORKOÇ H, STRITE S, GAO G B, et al. Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies[J]. Journal of Applied Physics, 1994, 76(3): 1363-1398. [3] EDDY C R Jr, GASKILL D K. Materials science. Silicon carbide as a platform for power electronics[J]. Science, 2009, 324(5933): 1398-1400. [4] LEE T,BHUNIA S,MEHREGANY M. Electromechanical computing at 500 ℃ with silicon carbide[J]. Science, 2010, 329 (5997): 1316-1318. [5] 冯 淦, 孙永强, 钱卫宁, 等. 4H-SiC半导体同质外延生长技术进展[J]. 人工晶体学报, 2020, 49(11): 2128-2138. FENG G, SUN Y Q, QIAN W N, et al. Progress in homoepitaxial growth of 4H-SiC semiconductor[J]. Journal of Synthetic Crystals, 2020, 49(11): 2128-2138 (in Chinese). [6] KURODA N,SHIBAHARA K,YOO W,et al. Step controlled VPE growth of SiC single crystals at low temperatures[M]. Tokyo: Extended Abstract 19th Conference on Solid State Devices and Materials: 1987. [7] UEDA T, NISHINO H, MATSUNAMI H. Crystal growth of SiC by step-controlled epitaxy[J]. Journal of Crystal Growth, 1990, 104(3): 695-700. [8] KONG H, KIM H J, EDMOND J A, et al. Growth, doping, device development and characterization of CVD beta-SiC epilayers on Si(100) and alpha-SiC(0001)[J]. MRS Online Proceedings Library, 1987, 97(1): 233-245. [9] LEONE S, HENRY A, JANZÉN E, et al. Epitaxial growth of SiC with chlorinated precursors on different off-angle substrates[J]. Journal of Crystal Growth, 2013, 362: 170-173. [10] CHOKAWA K, DAIGO Y, MIZUSHIMA I, et al. First-principles and thermodynamic analysis for gas phase reactions and structures of the SiC (0001) surface under conventional CVD and Halide CVD environments[J]. Japanese Journal of Applied Physics, 2021, 60(8): 085503. [11] HENRY A, LEONE S, BEYER C, et al. SiC epitaxy growth using chloride-based CVD[J]. Physica B, 2012, 407(10): 1467-1471. [12] LEONE S, MAUCERI M, PISTONE G. et al. SiC-4H epitaxial layer growth using trichlorosilane (TCS) as silicon precursor[J].Materials Science Forum, 2006, 527-529: 179-182. [13] DEIVENDRAN B, SHINDE V M, KUMAR H, et al. 3D Modeling and optimization of SiC deposition from CH3SiCl3/H2 in a commercial hot wall reactor[J]. Journal of Crystal Growth, 2021, 554: 125944. [14] 韩跃斌, 蒲 勇, 施建新. 化学气相沉积法碳化硅外延设备技术进展[J]. 人工晶体学报, 2022, 51(7): 1300-1308. HAN Y B, PU Y, SHI J X. Advances in chemical vapor deposition equipment used for SiC epitaxy[J]. Journal of Synthetic Crystals, 2022, 51(7): 1300-1308 (in Chinese). [15] THOMAS B, HECHT C, STEIN R A, et al. Challenges in large-area multi-wafer SiC epitaxy for production needs[J]. Materials Science Forum, 2006, 55(527/528/529): 135-140. [16] 高 欣, 孙国胜, 李晋闽, 等. 水平冷壁CVD生长4H-SiC同质外延膜的研究[J]. 半导体学报, 2005, 26(5): 936-940. GAO X, SUN G S, LI J M, et al. Study on growth of 4H-SiC homoepitaxial films by horizontal cold wall CVD[J]. Journal of Semiconductors, 2005, 26(5): 936-940 (in Chinese). [17] 闫果果, 张 峰, 刘兴昉,等. 零偏角Si-面(0001)衬底上4H-SiC同质外延生长研究[C]//中国电子学会; 中国有色金属学会, 2017. YAN G G, ZHANG F, LIU X F, et al. Homoepitaxial growth of Si-face (0001) on-axis 4H-SiC substrate[C]// China Electronics Society; China Nonferrous Metals Society, 2017 (in Chinese). [18] 毛开礼, 王英民, 李 斌, 等. SiC厚膜快速外延生长刻蚀工艺研究[J]. 功能材料, 2017, 48(1): 1139-1143. MAO K L, WANG Y M, LI B, et al. Effect of etching process on fast-epitaxial SiC thick films[J]. Journal of Functional Materials, 2017, 48(1): 1139-1143 (in Chinese). [19] 木本恒畅, 詹姆士A.库珀. 碳化硅技术基本原理:生长、表征器件和应用[M]. 夏经华, 潘 艳, 杨 霏, 等, 译. 北京:机械工业出版社,2018: 98. KIMOTO T,COOPER J A. Fundamentals of silicon carbide technology, growth,characterization,devices and applications[M]. XIA J H, PAN Y, YANG F, et al., Transl. Beijing: Mechanical Industry Press, 2018: 98 (in Chinese). [20] LA VIA F, GALVAGNO G, FOTI G, et al. 4H SiC epitaxial growth with chlorine addition[J]. Chemical Vapor Deposition: CVD, 2006, 12(8/9): 509-515. [21] ISHIDA Y, TAKAHASHI T, OKUMURA H, et al. Development of a practical high-rate CVD system[J]. Mater Sci Forum,2008,600-603: 119-122. [22] DAIGO Y, WATANABE T, ISHIGURO A, et al. Impact of precise temperature control for 4H-SiC epitaxy on large diameter wafers[C]//2020 International Symposium on Semiconductor Manufacturing (ISSM). December 15-16, 2020, Tokyo, Japan. IEEE, 2021: 1-4. [23] MITROVIC B, GURARY A, KADINSKI L. On the flow stability in vertical rotating disc MOCVD reactors under a wide range of process parameters[J]. Journal of Crystal Growth, 2006, 287(2): 656-663. [24] SCHÖNER A. New development in hot wall vapor phase epitaxial growth of silicon carbide[J]. Silicon Carbide, 2004:229-250. [25] DAIGO Y, ISHII S, KOBAYASHI T. Impacts of surface C/Si ratio on in-wafer uniformity and defect density of 4H-SiC homo-epitaxial films grown by high-speed wafer rotation vertical CVD[J]. Japanese Journal of Applied Physics, 2019, 58(SB): SBBK06. [26] 孙国胜, 董 林, 俞 军, 等. 新一代宽禁带4H-SiC功率半导体外延材料的产业化进展[J]. 军民两用技术与产品, 2013(6): 36-38. SUN G S, DONG L, YU J, et al. Industrialization progress of a new generation of wide band gap 4H-SiC power semiconductor epitaxial materials[J]. Dual Use Technologies & Products, 2013(6): 36-38 (in Chinese). [27] DAIGO Y, WATANABE T, ISHIGURO A, et al. Reduction of harmful effect due to by-product in CVD reactor for 4H-SiC epitaxy[C]//2020 International Symposium on Semiconductor Manufacturing (ISSM). December 15-16, 2020, Tokyo, Japan. IEEE, 2021: 1-4. |