[1] GAO Z Y, WANG C, SUN W, et al. Froth flotation of fluorite: a review[J]. Advances in Colloid and Interface Science, 2021, 290: 102382. [2] JU G D, TU G L, ZHAO Y S. Recent advances in transition-metal-catalyzed selective C-H Alkoxycarbonyldifluoromethylation reactions of aromatic substrates[J]. Synthesis-Stuttgart, 2021, 53: 3699-3715. [3] LI H W, WANG R, ZHAO W, et al. Sintered glass-ceramic foams from fluorite tailings and waste glass with calcium phosphate addition[J]. Construction and Building Materials, 2022, 359: 129528. [4] HU C, XU C, ZHANG L Y, et al. Development of yttrium-doped BaF2 crystals for future HEP experiments[J]. IEEE Transactions on Nuclear Science, 2019, 66(7): 1854-1860. [5] 郑嘉茜, 陈俊锋, 李 翔, 等. 掺杂抑制氟化钡晶体慢闪烁成分研究进展[J]. 人工晶体学报, 2022, 51(6): 951-964. ZHENG J Q, CHEN J F, LI X, et al. Research progress on suppression of slow scintillation component in Barium fluoride crystal by doping[J]. Journal of Synthetic Crystals, 2022, 51(6): 951-964 (in Chinese). [6] 杨 蕾, 张明荣, 刘建强, 等. Y3+/Li+和Y3+/Na+双掺杂氟化钡快响应闪烁晶体[J]. 人工晶体学报, 2022, 51(12): 1997-2002. YANG L, ZHANG M R, LIU J Q, et al. Y3+/Li+ and Y3+/Na+ co-doped Barium fluoride fast response scintillation crystal[J]. Journal of Synthetic Crystals, 2022, 51(12): 1997-2002 (in Chinese). [7] HUANG J W, ZHANG Q W, LI H C, et al. Difficulties and recent achievements in flotation separation of fluorite from calcite—an overview[J]. Minerals, 2022, 12(8): 957. [8] 段微波, 刘保剑, 庄秋慧, 等. 应用于空间遥感系统的红外光学薄膜研究进展(特邀)[J]. 光子学报, 2022, 51(9): 11-27. DUAN W B, LIU B J, ZHUANG Q H, et al. Research progress of infrared thin film coatings applied in space remote sensing systems (invited)[J]. Acta Photonica Sinica, 2022, 51(9): 11-27 (in Chinese). [9] SU S H, WANG J A, LI C, et al. Short-branched fluorinated polyurethane coating exhibiting good comprehensive performance and potential UV degradation in leather waterproofing modification[J]. Coatings, 2021, 11(4): 395. [10] VORONIN B M, VOLKOV S V. Ionic conductivity of fluorite type crystals CaF2, SrF2, BaF2, and SrCl2 at high temperatures[J]. Journal of Physics and Chemistry of Solids, 2001, 62(7): 1349-1358. [11] WANG H J, KOU H M, WANG Y Z, et al. Irradiation damage of CaF2 with different yttrium concentrations under 193 nm laser[J]. Journal of Inorganic Materials, 2023, 38(2): 219. [12] XIAO X E, SUN Q, HU T W, et al. Multifunctional CaF2∶Yb3+, Ho3+, Gd3+ nanocrystals: insight into crystal growth and properties of upconversion luminescence, magnetic, and temperature sensing properties[J]. Inorganic Chemistry, 2022, 61(38): 14934-14946. [13] DU S S, WANG Y H. A broad-range temperature sensor dependent on the magnetic and optical properties of SrF2∶Yb3+, Ho3+[J]. CrystEngComm, 2019, 21(9): 1452-1457. [14] SOROKIN N I, SOBOLEV B P. Correlation between the fluorine ion conductivities of Sr1-xRxF2+x (CaF2 type) and R1-ySryF3-y (LaF3 type) crystals in the SrF2-RF3 systems (R=La~Nd)[J]. Physics of the Solid State, 2019, 61(11): 2034-2040. [15] RONGEAT C, ANJI REDDY M, WITTER R, et al. Solid electrolytes for fluoride ion batteries: ionic conductivity in polycrystalline tysonite-type fluorides[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 2103-2110. [16] SUNDBERG J D, DRUFFEL D L, MCRAE L M, et al. High-throughput discovery of fluoride-ion conductors via a decoupled, dynamic, and iterative (DDI) framework[J]. NPJ Computational Materials, 2022, 8: 106. [17] ZYCH A, LEFERINK OP REININK A, VAN DER EERDEN K, et al. Luminescence properties of lanthanide doped alkaline earth chlorides under (V)UV and X-ray excitation[J]. Journal of Alloys and Compounds, 2011, 509(13): 4445-4451. [18] QIAO S, WANG Y, YIN L, et al. Luminescence properties of color-tunable phosphor material CaF2∶Eu[J]. Journal of Luminescence, 2022, 243: 118667. [19] QIN Z P, XIE G Q, MA J, et al. Generation of 103 fs mode-locked pulses by a gain linewidth-variable Nd, Y∶CaF2 disordered crystal[J]. Optics Letters, 2014, 39(7): 1737-1739. [20] KESSLER A, HORNUNG M, KEPPLER S, et al. 16.6 J chirped femtosecond laser pulses from a diode-pumped Yb∶CaF2 amplifier[J]. Optics Letters, 2014, 39(6): 1333-1336. [21] WANG Y X, LIU W X, ZHANG Z H, et al. Laser-diode-pumped Tm: SrF2 single crystal for high efficiency CW laser operation at ~2 μm[J]. Optics Letters, 2022, 47(5): 1117-1120. [22] 宗梦雨, 张 振, 刘晶晶, 等. LD泵浦的1.3at.%Er3+∶CaF2中红外高功率固体激光器(特邀)[J]. 红外与激光工程, 2021, 50(8): 122-127. ZONG M Y, ZHANG Z, LIU J J, et al. LD pumped high-power mid-infrared solid state lasers based on 1.3at.%Er3+∶CaF2 crystal (invited)[J]. Infrared and Laser Engineering, 2021, 50(8): 122-127 (in Chinese). [23] TALLANT D R, WRIGHT J C. Selective laser excitation of charge compensated sites in CaF2∶Er3+[J]. The Journal of Chemical Physics, 1975, 63(5): 2074-2085. [24] VORONKO Y K, OSIKO V V, SHCHERBAKOV I A. Investigation of the interaction of Nd3+ ions in CaF2, SrF2, and BaF2 crystals (type I)[J]. Soviet Physics JETP, 1969, 28: 838-844. [25] DEN HARTOG H W, PEN K F, MEULDIJK J. Defect structure and charge transport in solid solutions Ba1-xLaxF2+x[J]. Physical Review B, 1983, 28(10): 6031-6040. [26] CHEETHAM A K, FENDER B F, COOPER M J. Defect structure of calcium fluoride containing excess anions I. Bragg scattering[J]. Journal of Physics C: Solid State Physics, 1971, 4(18): 3107-3121. [27] ANDEEN C G, FONTANELLA J J, WINTERSGILL M C, et al. Clustering in rare-earth-doped alkaline earth fluorides (dielectric relaxation)[J]. Journal of Physics C: Solid State Physics, 1981, 14(24): 3557-3574. [28] CAPELLETTI R, OKUNO E, MATTHEWS G E, et al. ITC spectra of impurity aggregate in CaF2 crystals doped with trivalent rare-earth ions[J]. Physica Status Solidi (a), 1978, 47(2): 617-624. [29] CATLOW C R A, CHADWICK A V, GREAVES G N, et al. Direct observations of the dopant environment in fluorites using EXAFS[J]. Nature, 1984, 312(5995): 601-604. [30] BENDALL P J, CATLOW C R A, CORISH J, et al. Defect aggregation in anion-excess fluorites Ⅱ. Clusters containing more than two impurity atoms[J]. Journal of Solid State Chemistry, 1984, 51(2): 159-169. [31] LACROIX B, GENEVOIS C, DOUALAN J L, et al. Direct imaging of rare-earth ion clusters in Yb∶CaF2[J]. Physical Review B, 2014, 90(12): 125124. [32] MA F K, SU F, ZHOU R F, et al. The defect aggregation of RE3+ (RE=Y, La~Lu) in MF2 (M=Ca, Sr, Ba) fluorites[J]. Materials Research Bulletin, 2020, 125: 110788. [33] BEVAN D J M, STRÄHLE J, GREIS O. The crystal structure of tveitite, an ordered yttrofluorite mineral[J]. Journal of Solid State Chemistry, 1982, 44(1): 75-81. [34] SULYANOVA E A, SOBOLEV B P. The universal defect cluster architecture of fluorite-type nanostructured crystals[J]. CrystEngComm, 2022, 24(20): 3762-3769. [35] CAI J J, MA C G, YIN M. Factors influencing the structure of the complex-defects in AF2∶RE3+ (A=Ca, Sr and Ba): a first-principles study[J]. Journal of Luminescence, 2022, 250: 119058. [36] KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B, Condensed Matter, 1993, 47(1): 558-561. [37] KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. [38] BLÖCHL P E. Projector augmented-wave method[J]. Physical Review B, Condensed Matter, 1994, 50(24): 17953-17979. [39] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [40] LANY S, ZUNGER A. Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: case studies for ZnO and GaAs[J]. Physical Review B, 2008, 78(23): 235104. [41] PERSSON C, ZHAO Y J, LANY S, et al. n-type doping of CuInSe2 and CuGaSe2[J]. Physical Review B, 2005, 72: 035211. [42] MAKOV G, PAYNE M C. Periodic boundary conditions in ab initio calculations[J]. Physical Review B, 1995, 51(7): 4014-4022. [43] DUDAREV S L, BOTTON G A, SAVRASOV S Y, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study[J]. Physical Review B, 1998, 57(3): 1505-1509. [44] WAPENAAR K E D, CATLOW C R A. Association energies in Re3+-doped alkaline-earth fluorides studied by computational methods[J]. Solid State Ionics, 1981, 2(4): 245-251. [45] HEIST R H, FONG F K. Maxwell-boltzmann distribution of M3+-F- interstitial pairs in fluorite-type lattices[J]. Physical Review B, 1970, 1(7): 2970-2976. [46] SONI H R, GUPTA S K, TALATI M, et al. Ground state and lattice dynamical study of ionic conductors CaF2, SrF2 and BaF2 using density functional theory[J]. Journal of Physics and Chemistry of Solids, 2011, 72(8): 934-939. [47] JIANG H T, ORLANDO R, BLANCO M A, et al. First-principles study of the electronic structure of PbF2 in the cubic, orthorhombic, and hexagonal phases[J]. Journal of Physics: Condensed Matter, 2004, 16(18): 3081-3088. [48] KOSTIKOVA G P, KOROL′KOV D V, KOSTIKOV Y P. Valence states of lead and bismuth atoms in the high-temperature superconductor BaPb1-xBixO3[J]. Russian Journal of General Chemistry, 2001, 71(7): 1010-1012. [49] BROWN I D, ALTERMATT D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database[J]. Acta Crystallographica Section B Structural Science, 1985, 41(4): 244-247. [50] MA C G, BRIK M G. First-principles calculations of structural and electronic properties of pure and Tm2+-doped SrCl2[J]. Physica Status Solidi (b), 2013, 250(4): 858-863. [51] MA F K, JIANG D P, ZHANG Z, et al. Tailoring the local lattice distortion of Nd3+ by codoping of Y3+ through first principles calculation for tuning the spectroscopic properties[J]. Optical Materials Express, 2019, 9(11): 4256. |