[1] ZHANG X, ZHAO L D. Thermoelectric materials: energy conversion between heat and electricity[J]. Journal of Materiomics, 2015, 1(2): 92-105. [2] YANG L, CHEN Z G, DARGUSCH M S, et al. High performance thermoelectric materials: progress and their applications[J]. Advanced Energy Materials, 2018, 8(6): 1701797. [3] HAMID ELSHEIKH M, SHNAWAH D A, SABRI M F M, et al. A review on thermoelectric renewable energy: principle parameters that affect their performance[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 337-355. [4] CHANNEGOWDA M, MULLA R, NAGARAJ Y, et al. Comprehensive insights into synthesis, structural features, and thermoelectric properties of high-performance inorganic chalcogenide nanomaterials for conversion of waste heat to electricity[J]. ACS Applied Energy Materials, 2022, 5(7): 7913-7943. [5] SNYDER G J, TOBERER E S. Complex thermoelectric materials[J]. Nature Materials, 2008, 7(2): 105-114. [6] 余泽浩, 张力发, 吴 靖, 等. 二维层状热电材料研究进展[J]. 物理学报, 2023, 72(5): 135-155. YU Z H, ZHANG L F, WU J, et al. Recent progress of 2-dimensional layered thermoelectric materials[J]. Acta Physica Sinica, 2023, 72(5): 135-155 (in Chinese). [7] SU L Z, WANG D Y, WANG S N, et al. High thermoelectric performance realized through manipulating layered phonon-electron decoupling[J]. Science, 2022, 375(6587): 1385-1389. [8] LV H Y, LU W J, SHAO D F, et al. Strain-induced enhancement in the thermoelectric performance of a ZrS2 monolayer[J]. Journal of Materials Chemistry C, 2016, 4(20): 4538-4545. [9] OUYANG Y L, ZHANG Z W, LI D F, et al. Emerging theory, materials, and screening methods: new opportunities for promoting thermoelectric performance[J]. Annalen Der Physik, 2019, 531(4): 1800437. [10] 徐 庆, 赵琨鹏, 魏天然, 等. 热电材料的研究现状与未来展望[J]. 硅酸盐学报, 2021, 49(7): 1296-1305. XU Q, ZHAO K P, WEI T R, et al. Development and prospects of thermoelectric materials[J]. Journal of the Chinese Ceramic Society, 2021, 49(7): 1296-1305 (in Chinese). [11] ZHU T S, HE R, GONG S, et al. Charting lattice thermal conductivity for inorganic crystals and discovering rare earth chalcogenides for thermoelectrics[J]. Energy & Environmental Science, 2021, 14(6): 3559-3566. [12] MAY A F, SINGH D J, SNYDER G J. Influence of band structure on the large thermoelectric performance of lanthanum telluride[J]. Physical Review B, 2009, 79(15): 153101. [13] DELAIRE O, MAY A F, MCGUIRE M A, et al. Phonon density of states and heat capacity of La3-xTe4[J]. Physical Review B, 2009, 80(18): 184302. [14] CHEIKH D, HOGAN B E, VO T, et al. Praseodymium telluride: a high-temperature, high-ZT thermoelectric material[J]. Joule, 2018, 2(4): 698-709. [15] GOMEZ S J, CHEIKH D, VO T, et al. Synthesis and characterization of vacancy-doped neodymium telluride for thermoelectric applications[J]. Chemistry of Materials, 2019, 31(12): 4460-4468. [16] WOOD C, LOCKWOOD A, PARKER J, et al. Thermoelectric properties of lanthanum sulfide[J]. Journal of Applied Physics, 1985, 58(4): 1542-1547. [17] HE Z M, YANG M, WANG Z M, et al. Optimization of segmented thermoelectric devices composed of high-temperature thermoelectric material La2Te3[J]. Advanced Composites and Hybrid Materials, 2022, 5(4): 2884-2895. [18] CHEIKH D, LEE K, PENG W Y, et al. Thermoelectric properties of scandium sesquitelluride[J]. Materials, 2019, 12(5): 734. [19] ŁOCZECHIN A, SÉRON K, BARRAS A, et al. Functional carbon quantum dots as medical countermeasures to human coronavirus[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 42964-42974. [20] WITTING I T, CHASAPIS T C, RICCI F, et al. The thermoelectric properties of bismuth telluride[J]. Advanced Electronic Materials, 2019, 5(6): 1800904. [21] TORIYAMA M Y, CHEIKH D, BUX S K, et al. Y2Te3: a new n-type thermoelectric material[J]. ACS Applied Materials & Interfaces, 2022, 14(38): 43517-43526. [22] AL RAHAL AL ORABI R, MECHOLSKY N A, HWANG J, et al. Band degeneracy, low thermal conductivity, and high thermoelectric figure of merit in SnTe-CaTe alloys[J]. Chemistry of Materials, 2016, 28(1): 376-384. [23] TAN G J, SHI F Y, HAO S Q, et al. Codoping in SnTe: enhancement of thermoelectric performance through synergy of resonance levels and band convergence[J]. Journal of the American Chemical Society, 2015, 137(15): 5100-5112. [24] PICCIONE B, GIANOLA D S. Tunable thermoelectric transport in nanomeshes via elastic strain engineering[J]. Applied Physics Letters, 2015, 106(11): 113101. [25] CHANDRA SHEKAR N V, POLVANI D A, MENG J F, et al. Improved thermoelectric properties due to electronic topological transition under high pressure[J]. Physica B: Condensed Matter, 2005, 358(1/2/3/4): 14-18. [26] WANG V, XU N, LIU J C, et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Computer Physics Communications, 2021, 267: 108033. [27] KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. [28] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, Condensed Matter, 1996, 54(16): 11169-11186. [29] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [30] BLÖCHL P E. Projector augmented-wave method[J]. Physical Review B, Condensed Matter, 1994, 50(24): 17953-17979. [31] GORAI P, TOBERER E S, STEVANOVIĆ V. Thermoelectricity in transition metal compounds: the role of spin disorder[J]. Physical Chemistry Chemical Physics, 2016, 18(46): 31777-31786. [32] DUDAREV S L, BOTTON G A, SAVRASOV S Y, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study[J]. Physical Review B, 1998, 57(3): 1505-1509. [33] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192. [34] MADSEN G K H, CARRETE J, VERSTRAETE M J. BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients[J]. Computer Physics Communications, 2018, 231: 140-145. [35] BARDEEN J, SHOCKLEY W. Deformation potentials and mobilities in non-polar crystals[J]. Physical Review, 1950, 80(1): 72-80. [36] ZHU X L, LIU P F, XIE G F, et al. Thermoelectric properties of hexagonal M2C3 (M=As, Sb, and Bi) monolayers from first-principles calculations[J]. Nanomaterials, 2019, 9(4): 597. [37] KUMAR S, SCHWINGENSCHLÖGL U. Thermoelectric response of bulk and monolayer MoSe2 and WSe2[J]. Chemistry of Materials, 2015, 27(4): 1278-1284. [38] LEE M S, POUDEU F P, MAHANTI S D. Electronic structure and thermoelectric properties of Sb-based semiconducting half-Heusler compounds[J]. Physical Review B, 2011, 83(8): 085204. [39] GUO D L, HU C G, XI Y, et al. Strain effects to optimize thermoelectric properties of doped Bi2O2Se via tran-blaha modified becke-johnson density functional theory[J]. The Journal of Physical Chemistry C, 2013, 117(41): 21597-21602. [40] XI J Y, LONG M Q, TANG L, et al. First-principles prediction of charge mobility in carbon and organic nanomaterials[J]. Nanoscale, 2012, 4(15): 4348-4369. [41] PEI Y Z, SHI X Y, LALONDE A, et al. Convergence of electronic bands for high performance bulk thermoelectrics[J]. Nature, 2011, 473(7345): 66-69. [42] WANG F Q, GUO Y G, WANG Q A, et al. Exceptional thermoelectric properties of layered GeAs2[J]. Chemistry of Materials, 2017, 29(21): 9300-9307. [43] JONSON M, MAHAN G D. Mott’s formula for the thermopower and the Wiedemann-Franz law[J]. Physical Review B, 1980, 21(10): 4223-4229. [44] STOJANOVIC N, MAITHRIPALA D H S, BERG J M, et al. Thermal conductivity in metallic nanostructures at high temperature: electrons, phonons, and the Wiedemann-Franz law[J]. Physical Review B, 2010, 82(7): 075418. |