[1] SHIN D, HUANG R, JANG M G, et al. Role of an interface for hydrogen production reaction over size-controlled supported metal catalysts[J]. ACS Catalysis, 2022, 12(13): 8082-8093. [2] CAI G H, HE Y Y, REN H J, et al. Hydrogen production via water-gas shift reaction by Cu/SiO2 catalyst: a case study of CeO2 doping[J]. Energy & Fuels, 2021, 35(4): 3521-3528. [3] KIM S H, WOO S W, KIM C S, et al. Hydrogen production by electrochemical reaction using ethylene glycol with terephthalic acid[J]. RSC Advances, 2021, 11(4): 2088-2095. [4] DIAO J X, QIU Y, LIU S Q, et al. Interfacial engineering of W2N/WC heterostructures derived from solid-state synthesis: a highly efficient trifunctional electrocatalyst for ORR, OER, and HER[J]. Advanced Materials, 2020, 32(7): 1905679. [5] LV H F, XI Z, CHEN Z Z, et al. A new core/shell NiAu/Au nanoparticle catalyst with Pt-like activity for hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2015, 137(18): 5859-5862. [6] ZHANG C T, WANG P Y, LI W Q, et al. MOF-assisted synthesis of octahedral carbon-supported PtCu nanoalloy catalysts for an efficient hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2020, 8(37): 19348-19356. [7] LEE D, KIM Y, KIM H W, et al. In situ electrochemically synthesized Pt-MoO3-x nanostructure catalysts for efficient hydrogen evolution reaction[J]. Journal of Catalysis, 2020, 381: 1-13. [8] KEMPPAINEN E, BODIN A, SEBOK B, et al. Scalability and feasibility of photoelectrochemical H2 evolution: the ultimate limit of Pt nanoparticle as an HER catalyst[J]. Energy & Environmental Science, 2015, 8(10): 2991-2999. [9] DURST J, SIMON C, SIEBEL A, et al. hydrogen oxidation and evolution reaction (HOR/HER) on Pt electrodes in acid vs. alkaline electrolytes: mechanism, activity and particle size effects[J]. ECS Transactions, 2014, 64(3): 1069-1080. [10] MA X G, WANG Z N, WANG Z H, et al. Adjusting grain boundary within NiCo2O4 rod arrays by phosphating reaction for efficient hydrogen production[J]. Nanotechnology, 2022, 33(24): 245604. [11] HONG J W. Development of visible-light-driven Rh-TiO2-CeO2 hybrid photocatalysts for hydrogen production[J]. Catalysts, 2021, 11(7): 848. [12] LI D H, SUN J, MA R, et al. High-efficient solar-driven hydrogen production by full-spectrum synergistic photo-thermo-catalytic methanol steam reforming with in situ photoreduced Pt-CuOx catalyst[J]. Journal of Energy Chemistry, 2022, 71: 460-469. [13] BAI J, JIA N, JIN P J, et al. Metal-organic interface engineering for boosting the electroactivity of Pt nanodendrites for hydrogen production[J]. Journal of Energy Chemistry, 2020, 51: 105-112. [14] ZHANG Z C, LIU G G, CUI X Y, et al. Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution[J]. Advanced Materials, 2018, 30(30): 1801741. [15] CLAUDIO-PIEDRAS A, RAMÍREZ-ZAMORA R M, ALCÁNTAR-VÁZQUEZ B C, et al. One dimensional Pt/CeO2-NR catalysts for hydrogen production by steam reforming of methanol: effect of Pt precursor[J]. Catalysis Today, 2021, 360: 55-62. [16] CAVALCANTI F M, SCHMAL M, GIUDICI R, et al. A catalyst selection method for hydrogen production through water-gas shift reaction using artificial neural networks[J]. Journal of Environmental Management, 2019, 237: 585-594. [17] YANG Y T, DAI Q M, SHI L Y, et al. Electronic modulation of Pt nanoparticles on Ni3N-Mo2C by support-induced strategy for accelerating hydrogen oxidation and evolution[J]. The Journal of Physical Chemistry Letters, 2022, 13(9): 2107-2116. [18] PAPAGERIDIS K N, SIAKAVELAS G, CHARISIOU N D, et al. Comparative study of Ni, Co, Cu supported on γ-alumina catalysts for hydrogen production via the glycerol steam reforming reaction[J]. Fuel Processing Technology, 2016, 152: 156-175. [19] LUO M, CAI J Y, ZOU J S, et al. Promoted alkaline hydrogen evolution by an N-doped Pt-Ru single atom alloy[J]. Journal of Materials Chemistry A, 2021, 9(26): 14941-14947. [20] WEBER D J, JANSSEN M, OEZASLAN M. Effect of monovalent cations on the HOR/HER activity for Pt in alkaline environment[J]. Journal of the Electrochemical Society, 2019, 166(2): F66-F73. [21] CHI J Q, XIE J Y, ZHANG W W, et al. N-doped sandwich-structured Mo2C@C@Pt interface with ultralow Pt loading for pH-universal hydrogen evolution reaction[J]. ACS Applied Materials & Interfaces, 2019, 11(4): 4047-4056. [22] HAN Z, ZHANG R L, DUAN J J, et al. Platinum-rhodium alloyed dendritic nanoassemblies: an all-pH efficient and stable electrocatalyst for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6110-6119. [23] DENG J, LI H B, XIAO J P, et al. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping[J]. Energy & Environmental Science, 2015, 8(5): 1594-1601. [24] LIU Y, LIU S L, CHE Z W, et al. Concave octahedral Pd@PdPt electrocatalysts integrating coreâ shell, alloy and concave structures for high-efficiency oxygen reduction and hydrogen evolution reactions[J]. Journal of Materials Chemistry A, 2016, 4(42): 16690-16697. [25] HUANG X Y, WANG A J, ZHANG X F, et al. One-step synthesis of PtCu alloyed nanocages with highly open structures as bifunctional electrocatalysts for oxygen reduction and polyhydric alcohol oxidation[J]. ACS Applied Energy Materials, 2018: 8b01385. [26] WANG Y H, CHEN L, YU X M, et al. Superb alkaline hydrogen evolution and simultaneous electricity generation by Pt-decorated Ni3N nanosheets[J]. Advanced Energy Materials, 2017, 7(2): 1601390. [27] SHI Y M, XU Y, ZHUO S F, et al. Ni2P nanosheets/Ni foam composite electrode for long-lived and pH-tolerable electrochemical hydrogen generation[J]. ACS Applied Materials & Interfaces, 2015, 7(4): 2376-2384. |