[1] 李 娟, 张丛春, 杨申勇, 等. MEMS薄膜热流传感器研制[J]. 传感器与微系统, 2019, 38(5): 71-73. LI J, ZHANG C C, YANG S Y, et al. Research and fabrication of MEMS thin-film heat flux sensor[J]. Transducer and Microsystem Technologies, 2019, 38(5): 71-73 (in Chinese). [2] IRIMPAN K J, MANNIL N, ARYA H, et al. Performance evaluation of coaxial thermocouple against platinum thin film gauge for heat flux measurement in shock tunnel[J]. Measurement, 2015, 61: 291-298. [3] MENEZES V, BHAT S. A coaxial thermocouple for shock tunnel applications[J]. The Review of Scientific Instruments, 2010, 81(10): 104905. [4] LI L, FAN X J, WANG J. Measurements of wall heat flux and temperature in a supersonic model combustors[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. San Diego, California. Reston, Virigina: AIAA, 2011. [5] GUILLOT E, ALXNEIT I, BALLESTRIN J, et al. Comparison of 3 heat flux gauges and a water calorimeter for concentrated solar irradiance measurement[J]. Energy Procedia, 2014, 49: 2090-2099. [6] ZHANG C C, HUANG J Z, LI J, et al. Design, fabrication and characterization of high temperature thin film heat flux sensors[J]. Microelectronic Engineering, 2019, 217: 111128. [7] 周丽丽, 刘正坤, 宝剑光, 等. 基于薄膜热电堆的新型高温瞬态热流密度传感器的研制[J]. 宇航计测技术, 2018, 38(6): 50-56. ZHOU L L, LIU Z K, BAO J G, et al. Development of novel high temperature transient heat-flux sensor based on thin thermopile[J]. Journal of Astronautic Metrology and Measurement, 2018, 38(6): 50-56 (in Chinese). [8] SAHOO N, PEETALA R K. Transient surface heating rates from a nickel film sensor using inverse analysis[J]. International Journal of Heat and Mass Transfer, 2011, 54(5/6): 1297-1302. [9] KUMAR R, SAHOO N, KULKARNI V. Conduction based calibration of handmade platinum thin film heat transfer gauges for transient measurements[J]. International Journal of Heat and Mass Transfer, 2012, 55(9/10): 2707-2713. [10] LIU W, TAKASE K. Development of measurement technology for surface heat fluxes and temperatures[J]. Nuclear Engineering and Design, 2012, 249: 166-171. [11] 罗 浩, 彭同江, 孙红娟. 硫酸铜酸性镀铜法制备铜-康铜热电堆的最佳实验条件研究[J]. 西南科技大学学报, 2012, 27(1): 19-24. LUO H, PENG T J, SUN H J. Experimental study on the best conditions of preparation copper-constantan thermopile by copper sulfate acid copper plating[J]. Journal of Southwest University of Science and Technology, 2012, 27(1): 19-24 (in Chinese). [12] 储小刚. 热电堆式热流传感器的设计与实验研究[D]. 南京: 南京理工大学, 2016. CHU X G. Design and experimental study of thermopile heat flow sensor[D]. Nanjing: Nanjing University of Science and Technology, 2016 (in Chinese). [13] ZHANG T, TAN Q L, LYU W, et al. Design and fabrication of a thick film heat flux sensor for ultra-high temperature environment[J]. IEEE Access, 2019, 7: 180771-180778. [14] TIAN W, WANG Y, ZHOU H, et al. Micromachined thermopile based high heat flux sensor[J]. Journal of Microelectromechanical Systems, 2020, 29(1): 36-42. [15] FU X L, LIN Q Y, PENG Y Q, et al. High-temperature heat flux sensor based on tungsten-rhenium thin-film thermocouple[J]. IEEE Sensors Journal, 2020, 20(18): 10444-10452. [16] LI X, SUN D H, CUI Z F, et al. The influence of spatial arrangement of endpoints on output characteristics of ITO/In2O3 heat flux gauge[J]. Sensors and Actuators A: Physical, 2021, 322: 112587. [17] 崔云先, 黄金鹏, 曹凯迪, 等. 新型高温薄膜热流传感器的研制[J]. 仪器仪表学报, 2021, 42(3): 78-87. CUI Y X, HUANG J P, CAO K D, et al. Development of a new type of high temperature thin film heat flux sensor[J]. Chinese Journal of Scientific Instrument, 2021, 42(3): 78-87 (in Chinese). [18] WANG D H, WANG M Z, PENG Y H, et al. Printed circuit board process based thermopile-type heat flux sensor used for monitoring chips[J]. Applied Thermal Engineering, 2022, 205: 117860. [19] 郭林琪, 张梅菊, 金 毅, 等. 基于热电堆的新型高温薄膜热流传感器的研制[J]. 传感技术学报, 2022, 35(9): 1167-1173. GUO L Q, ZHANG M J, JIN Y, et al. Development of a new type of high temperature thin film heat flux sensor based on thermopile[J]. Chinese Journal of Sensors and Actuators, 2022, 35(9): 1167-1173 (in Chinese). [20] CHOPRA K L, BAHL S K, RANDLETT M R. Thermopower in thin-film copper: constantan couples[J]. Journal of Applied Physics, 1968, 39(3): 1525-1528. [21] 陈皓帆, 杨丽红. 磁控溅射工艺参数对Cu薄膜电阻率的影响[J]. 电子元件与材料, 2013, 32(4): 12-15. CHEN H F, YANG L H. Effects of process parameters on resistivity of copper thin films deposited using magnetron sputtering[J]. Electronic Components & Materials, 2013, 32(4): 12-15 (in Chinese). [22] LIU D, SHI P, REN W, et al. Enhanced La0.8Sr0.2CrO3/Pt thin film thermocouple with Al2O3 coating layer for high temperature sensing[J]. Ceramics International, 2018, 44: S233-S237. [23] LIU D, SHI P, REN W, et al. Fabrication and characterization of La0.8Sr0.2CrO3/In2O3 thin film thermocouple for high temperature sensing[J]. Sensors and Actuators A: Physical, 2018, 280: 459-465. [24] 白秀琴. 基体表面粗糙度对低温磁控溅射TiN的影响研究[J]. 三峡大学学报(自然科学版), 2006, 28(1): 57-60. BAI X Q. A study of effects of substrate surface roughness on low temperature magnetic sputtering TiN[J]. Journal of China Three Gorges University (Natural Sciences), 2006, 28(1): 57-60 (in Chinese). [25] 唐 武, 邓龙江, 徐可为, 等. 金属薄膜电阻率与表面粗糙度、残余应力的关系[J]. 稀有金属材料与工程, 2008, 37(4): 617-620. TANG W, DENG L J, XU K W, et al. Relationship between resistivity of metallic film and its surface roughness, residual stress[J]. Rare Metal Materials and Engineering, 2008, 37(4): 617-620 (in Chinese). [26] 孟松鹤, 丁小恒, 易法军, 等. 高超声速飞行器表面测热技术综述[J]. 航空学报, 2014, 35(7): 1759-1775. MENG S H, DING X H, YI F J, et al. Overview of heat measurement technology for hypersonic vehicle surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7): 1759-1775 (in Chinese). [27] 李 璐. 基于黑体辐射原理的热流传感器校准方法研究[D]. 太原: 中北大学, 2021. LI L. Research on calibration method of heat flow sensor based on blackbody radiation principle[D]. Taiyuan: North University of China, 2021 (in Chinese). [28] CATTANI M, SALVADORI M C, VAZ A R, et al. Thermoelectric power in very thin film thermocouples: quantum size effects[J]. Journal of Applied Physics, 2006, 100(11): 114905. [29] 杨丽红, 陈皓帆, 王景良. T型薄膜热电偶灵敏度与薄膜电阻率的关系[J]. 电子元件与材料, 2014, 33(9): 45-49. YANG L H, CHEN H F, WANG J L. Study on relationship between the sensitivity of the T-type thin film thermocouple and resistivities of films[J]. Electronic Components & Materials, 2014, 33(9): 45-49 (in Chinese). |