[1] MONDAL S, MANIVASAGAN P, BHARATHIRAJA S, et al. Magnetic hydroxyapatite: a promising multifunctional platform for nanomedicine application[J]. International Journal of Nanomedicine, 2017, 12: 8389-8410. [2] KANCHANA P, LAVANYA N, SEKAR C. Development of amperometric l-tyrosine sensor based on Fe-doped hydroxyapatite nanoparticles[J]. Materials Science and Engineering: C, 2014, 35: 85-91. [3] BHATTACHARJEE A, GUPTA A, VERMA M, et al. Antibacterial and magnetic response of site-specific cobalt incorporated hydroxyapatite[J]. Ceramics International, 2020, 46(1): 513-522. [4] TAMPIERI A, D’ALESSANDRO T, SANDRI M, et al. Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite[J]. Acta Biomaterialia, 2012, 8(2): 843-851. [5] OLIVEIRA P H, SANTANA L A B, FERREIRA N S, et al. Manganese behavior in hydroxyapatite crystals revealed by X-ray difference Fourier maps[J]. Ceramics International, 2020, 46(8): 10585-10597. [6] PASANDIDEH Z, TAJABADI M, JAVADPOUR J, et al. The effects of Fe3+ and Co2+ substitution in Ca10-x-yFexCoy(PO4)6(OH)2 hydroxyapatite nanoparticles: magnetic, antibacterial, and improved drug release behavior[J]. Ceramics International, 2020, 46(10): 16104-16118. [7] LIU Y, SUN Y, CAO C, et al. Long-term biodistribution in vivo and toxicity of radioactive/magnetic hydroxyapatite nanorods[J]. Biomaterials, 2014, 35(10): 3348-3355. [8] NUÑEZ N, RAINERI M, TROIANI H E, et al. Zinc ferrite nanoparticles embedded in hydroxyapatite for magnetic hyperthermia and sensitive to ionizing radiation[J]. Journal of Alloys and Compounds, 2022, 920: 165887. [9] CHEN G Y, ZHENG X Y, WANG C, et al. A postsynthetic ion exchange method for tunable doping of hydroxyapatite nanocrystals[J]. RSC Advances, 2017, 7(89): 56537-56542. [10] BHARATH G, PRABHU D, MANGALARAJ D, et al. Facile in situ growth of Fe3O4 nanoparticles on hydroxyapatite nanorods for pH dependent adsorption and controlled release of proteins[J]. RSC Advances, 2014, 4(92): 50510-50520. [11] SINGH R K, EL-FIQI A M, PATEL K D, et al. A novel preparation of magnetic hydroxyapatite nanotubes[J]. Materials Letters, 2012, 75: 130-133. [12] AKIYAMA J, HASHIMOTO M, TAKADAMA H, et al. Orientation of hydroxyapatite C-axis under high magnetic field with mold rotation and subsequent sintering process[J]. Materials Transactions, 2005, 46(11): 2514-2517. [13] IWAI K, AKIYAMA J, SUNG M G, et al. Application of a strong magnetic field on materials fabrication and experimental simulation[J]. Science and Technology of Advanced Materials, 2006, 7(4): 365-368. [14] 王小龙, 任忠鸣, 常 江. 铁掺杂羟基磷灰石的制备及在强磁场中的定向研究[J]. 无机材料学报, 2018, 33(1): 75-80. WANG X L, REN Z M, CHANG J. Synthesis and orientation of Fe-doped hydroxyapatite in high magnetic field[J]. Journal of Inorganic Materials, 2018, 33(1): 75-80(in Chinese). [15] AKIYAMA J, HASHIMOTO M, TAKADAMA H, et al. Formation of c-axis aligned polycrystal hydroxyapatite using a high magnetic field with mechanical sample rotation[J]. Journal of the Japan Institute of Metals, 2006, 70(5): 412-414. [16] ERB R M, LIBANORI R, ROTHFUCHS N, et al. Composites reinforced in three dimensions by using low magnetic fields[J]. Science, 2012, 335(6065): 199-204. [17] LE FERRAND H, BOUVILLE F, NIEBEL T P, et al. Addendum: magnetically assisted slip casting of bioinspired heterogeneous composites[J]. Nature Materials, 2017, 16(12): 1272-1273. [18] LIBANORI R, CARNELLI D, ROTHFUCHS N, et al. Composites reinforced via mechanical interlocking of surface-roughened microplatelets within ductile and brittle matrices[J]. Bioinspiration & Biomimetics, 2016, 11(3): 036004. [19] 刘 娇, 刘金坤, 颜廷亭, 等. 尿素添加量对水浴合成羟基磷灰石晶须组成、形貌和结构的影响[J]. 人工晶体学报, 2019, 48(3): 487-493. LIU J, LIU J K, YAN T T, et al. Effect of urea addition on composition, morphology and structure of hydroxyapatite whiskers synthesied by waterbath[J]. Journal of Synthetic Crystals, 2019, 48(3): 487-493 (in Chinese). [20] PARK J, AN K, HWANG Y, et al. Ultra-large-scale syntheses of monodisperse nanocrystals[J]. Nature Materials, 2004, 3(12): 891-895. [21] FAN H, SONG X F, XU Y X, et al. Insights into the modification for improving the surface property of calcium sulfate whisker: experimental and DFT simulation study[J]. Applied Surface Science, 2019, 478: 594-600. |