[1] KONG L B, HUANG Y Z, QUE W X, et al. Transparent Ceramics[M]. Cham: Springer International Publishing, 2015. [2] GOLDSTEIN A, KRELL A, BURSHTEIN Z. Transparent Ceramics[M]. Hoboken (NJ): John Wiley & Sons: Wiley, 2020. [3] LI C Y, XIE T F, YE Z, et al. Polycrystalline Ho∶LuAG laser ceramics: fabrication, microstructure, and optical characterization[J]. Journal of the American Ceramic Society, 2017, 100(5): 2081-2087. [4] WANG S F, ZHANG J, LUO D W, et al. Transparent ceramics: processing, materials and applications[J]. Progress in Solid State Chemistry, 2013, 41(1/2): 20-54. [5] LI J, PAN Y B, ZENG Y P, et al. The history, development, and future prospects for laser ceramics: a review[J]. International Journal of Refractory Metals and Hard Materials, 2013, 39: 44-52. [6] XIAO Z H, YU S J, LI Y M, et al. Materials development and potential applications of transparent ceramics: a review[J]. Materials Science and Engineering: R: Reports, 2020, 139: 100518. [7] IKESUE A, KINOSHITA T, KAMATA K, et al. Fabrication and optical properties of high-performance polycrystalline Nd∶YAG ceramics for solid-state lasers[J]. Journal of the American Ceramic Society, 1995, 78(4): 1033-1040. [8] GOLDSTEIN A, KRELL A. Transparent ceramics at 50: progress made and further prospects[J]. Journal of the American Ceramic Society, 2016, 99(10): 3173-3197. [9] LIU K, HE D W, WANG H M, et al. High-pressure sintering mechanism of yttrium aluminum garnet (Y3Al5O12) transparent nanoceramics[J]. Scripta Materialia, 2012, 66(6): 319-322. [10] ZHANG X Y, ZHANG L, ZHOU T Y, et al. High specific surface area inherited from sea-urchin-like AACH clusters prepared by a novel spray precipitation[J]. Rare Metals, 2022, 41(11): 3684-3693. [11] WANG H M, LIU L Y, YE P C, et al. 3D printing of transparent spinel ceramics with transmittance approaching the theoretical limit[J]. Advanced Materials, 2021, 33(15): 2007072. [12] LI B N, XUE Z X, JIANG B X, et al. 3D printing of infrared transparent ceramics via material extrusion[J]. Additive Manufacturing, 2023, 61: 103364. [13] WANG J, MA J, ZHANG J, et al. Yb∶Y2O3 transparent ceramics processed with hot isostatic pressing[J]. Optical Materials, 2017, 71: 117-120. [14] WANG Z Y, ZHANG L, YANG H, et al. High optical quality Y2O3 transparent ceramics with fine grain size fabricated by low temperature air pre-sintering and post-HIP treatment[J]. Ceramics International, 2016, 42(3): 4238-4245. [15] ZHANG J, AN L Q, LIU M, et al. Sintering of Yb3+∶Y2O3 transparent ceramics in hydrogen atmosphere[J]. Journal of the European Ceramic Society, 2009, 29(2): 305-309. [16] BALABANOV S S, YAVETSKIY R P, BELYAEV A V, et al. Fabrication of transparent MgAl2O4 ceramics by hot-pressing of sol-gel-derived nanopowders[J]. Ceramics International, 2015, 41(10): 13366-13371. [17] FENG S W, GUO Y C, ALLIX M, et al. Biphasic Lu3MgAl3SiO12-based transparent ceramics for uniform laser-diode-driven white lighting[J]. Cell Reports Physical Science, 2022, 3(9): 101044. [18] ZHOU T Y, HOU C, ZHANG L, et al. Efficient spectral regulation in Ce∶Lu3(Al, Cr)5O12 and Ce∶Lu3(Al, Cr)5O12/Ce∶Y3Al5O12 transparent ceramics with high color rendering index for high-power white LEDs/LDs[J]. Journal of Advanced Ceramics, 2021, 10(5): 1107-1118. [19] ZHU L L, XU X, DAI M M, et al. Effects of ZrO2 concentration on properties of Tm2O3 transparent ceramics by vacuum sintering[J]. Ceramics International, 2021, 47(24): 35268-35274. [20] 袁明星, 周天元, 周 伟, 等. 太阳光直接泵浦固体激光器研究进展[J]. 发光学报, 2021, 42(1): 10-27. YUAN M X, ZHOU T Y, ZHOU W, et al. Research progress of solar directly pumped solid-state laser[J]. Chinese Journal of Luminescence, 2021, 42(1): 10-27 (in Chinese). [21] 宋立业, 张振东, 屈晓莉, 等. Ce∶YAG透明陶瓷的制备和光学性能[J]. 人工晶体学报, 2016, 45(11): 2661-2665. SONG L Y, ZHANG Z D, QU X L, et al. Preparation and optical properties of Ce∶YAG transparent ceramics[J]. Journal of Synthetic Crystals, 2016, 45(11): 2661-2665 (in Chinese). [22] NI M, WANG J, MA J E, et al. Synthesis of yttria nanopowder with poly acrylic acid as dispersant for highly transparent yttria ceramics[J]. Journal of the American Ceramic Society, 2022, 105(3): 2029-2037. [23] WEI Y J, GU S J, FANG H L, et al. Properties of MgO transparent ceramics prepared at low temperature using high sintering activity MgO powders[J]. Journal of the American Ceramic Society, 2020, 103(9): 5382-5391. [24] 马 飞, 曹林洪, 刘天源. 改进的共沉淀法制备YAG纳米粉体及透明陶瓷[J]. 人工晶体学报, 2013, 42(9): 1785-1790. MA F, CAO L H, LIU T Y. Preparation of yttrium aluminum garnet nano-powder and transparent ceramic by a modified co-precipitation method[J]. Journal of Synthetic Crystals, 2013, 42(9): 1785-1790 (in Chinese). [25] 陈丹莉, 黄小凤, 刘红盼, 等. 晶核剂P2O5对CaO-Al2O3-SiO2系黄磷炉渣微晶玻璃析晶的影响[J]. 人工晶体学报, 2017, 46(11): 2137-2142. CHEN D L, HUANG X F, LIU H P, et al. Effect of nucleation agent P2O5 on crystallization of CaO-Al2O3-SiO2 glass ceramics from yellow phosphorus furnace slag[J]. Journal of Synthetic Crystals, 2017, 46(11): 2137-2142 (in Chinese). [26] ALLIX M, ALAHRACHE S, FAYON F, et al. Highly transparent BaAl4O7 polycrystalline ceramic obtained by full crystallization from glass[J]. Advanced Materials, 2012, 24(41): 5570-5575. [27] ALAHRACHÉ S, AL SAGHIR K, CHENU S, et al. Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization[J]. Chemistry of Materials, 2013, 25(20): 4017-4024. [28] APETZ R, BRUGGEN M P B V. Transparent alumina: a light-scattering model[J]. Journal of the American Ceramic Society, 2003, 86(3): 480-486. [29] MUSGRAVES J D, HU J J, CALVEZ L. Springer handbook of glass[M]. Cham, Switzerland: Springer, 2019. [30] 邓 爽, 张洪波, 邹翔宇, 等. Er3+/Yb3+共掺铌硅酸盐透明玻璃陶瓷的制备及表征[J]. 人工晶体学报, 2014, 43(10): 2615-2619. DENG S, ZHANG H B, ZOU X Y, et al. Preparation and characterization of Er3+/Yb3+ co-doped niobium silicate transparent glass-ceramics[J]. Journal of Synthetic Crystals, 2014, 43(10): 2615-2619 (in Chinese). [31] RAMÍREZ ACOSTA M H, RAPHAEL RODRIGUES L, GUARIN CASTRO E D, et al. Assessing glass-ceramic homogeneity and nucleation self-correlation by crystallization statistics[J]. Journal of the American Ceramic Society, 2021, 104(9): 4459-4470. [32] ARORA P, SOOD A, GANAPATHY R. Motile topological defects hinder dynamical arrest in dense liquids of active ellipsoids[J]. Physical Review Letters, 2022, 128(17): 178002. [33] AMORÓS J L, BLASCO E, MORENO A, et al. Mechanical properties obtained by nanoindentation of sintered zircon-glass matrix composites[J]. Ceramics International, 2020, 46(8): 10691-10695. [34] DEUBENER J, ALLIX M, DAVIS M J, et al. Updated definition of glass-ceramics[J]. Journal of Non-Crystalline Solids, 2018, 501: 3-10. [35] XIE H D, CHEN L Y, YUAN C, et al. Eu2+-doped yellow-emitting CsBaB3O6 glass-ceramic prepared by melt quenching and re-crystallization method[J]. Journal of the American Ceramic Society, 2014, 97(10): 3216-3222. [36] HU T, NING L X, GAO Y, et al. Glass crystallization making red phosphor for high-power warm white lighting[J]. Light: Science & Applications, 2021, 10: 56. [37] QIANG Y C, PAN Z F, LIANG M Z, et al. Highly transparent and color-adjustable Eu2+ doped SrO-SiO2-Al2O3 multilayered glass ceramic prepared by controlling crystallization from glass[J]. Journal of the European Ceramic Society, 2019, 39(13): 3856-3866. [38] TRATSIAK Y, TRUSOVA E, BURYI M, et al. The effect of be co-doping on luminescence properties of Gd3Al3Ga2O12∶Ce glass ceramics[J]. Physica Status Solidi (a), 2022, 219(13): 2200043. [39] XU J, YANG Y, WANG J, et al. Industry-friendly synthesis and high saturation threshold of a LuAG∶Ce/glass composite film realizing high-brightness laser lighting[J]. Journal of the European Ceramic Society, 2020, 40(15): 6031-6036. [40] YUE X M, LIN H, LIN S S, et al. La3Si6N11∶Ce3+ luminescent glass ceramics applicable to high-power solid-state lighting[J]. Chinese Journal of Luminescence, 2020, 41(12): 1529-1537. [41] ZHANG X J, YU J B, WANG J, et al. All-inorganic light convertor based on phosphor-in-glass engineering for next-generation modular high-brightness white LEDs/LDs[J]. ACS Photonics, 2017, 4(4): 986-995. [42] YANG H S, ZHANG Y J, ZHANG Y Q, et al. Designed glass frames full color in white light-emitting diodes and laser diodes lighting[J]. Chemical Engineering Journal, 2021, 414: 128754. [43] AL SAGHIR K, CHENU S, VERON E, et al. Transparency through structural disorder: a new concept for innovative transparent ceramics[J]. Chemistry of Materials, 2015, 27(2): 508-514. [44] BERTRAND A, CARREAUD J, CHENU S, et al. Transparent ceramics: scalable and formable tellurite-based transparent ceramics for near infrared applications[J]. Advanced Optical Materials, 2016, 4(10): 1481. [45] TANG J Z, LV S C, LIN Z Y, et al. Pressureless crystallization of glass toward scintillating composite with high crystallinity for radiation detection[J]. Journal of Materials Science & Technology, 2022, 129: 173-180. [46] ROSENFLANZ A, FREY M, ENDRES B, et al. Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides[J]. Nature, 2004, 430(7001): 761-764. [47] MEI L, HE G, WANG L L, et al. Fabrication of transparent LaAlO3/t-ZrO2 nanoceramics through controlled amorphous crystallization[J]. Journal of the European Ceramic Society, 2011, 31(9): 1603-1609. [48] ARAKI S, YOSHIMURA M. Transparent nano-composites ceramics by annealing of amorphous phase in the HfO2-Al2O3-GdAlO3 system[J]. International Journal of Applied Ceramic Technology, 2005, 1(2): 155-160. [49] ARAKI S, YOSHIMURA M. Fabrication of transparent ceramics through melt solidification of near eutectic compositions in HfO2-Al2O3-GdAlO3 system[J]. Journal of the European Ceramic Society, 2006, 26(15): 3295-3299. [50] ZHENG G J, XIAO W G, WU J H, et al. Glass-crystallized luminescence translucent ceramics toward high-performance broadband NIR LEDs[J]. Advanced science, 2022, 9(8): 2105713. [51] IRIFUNE T, KAWAKAMI K, ARIMOTO T, et al. Pressure-induced nano-crystallization of silicate garnets from glass[J]. Nature Communications, 2016, 7: 13753. [52] DOLHEN M, TANAKA M, COUDERC V, et al. Nd3+-doped transparent tellurite ceramics bulk lasers[J]. Scientific Reports, 2018, 8: 4640. [53] DOLHEN M, ALLIX M, SAROU-KANIAN V, et al. A comprehensive study of the glass/translucent anti-glass/transparent ceramic structural ordering in the Bi2O3-Nb2O5-TeO2 system[J]. Acta Materialia, 2020, 189: 73-84. [54] WEN S F, WANG Y P, LAN B J, et al. Pressureless crystallization of glass for transparent nanoceramics[J]. Advanced Science, 2019, 6(17): 1901096. [55] BOYER M, ALAHRACHÉ S, GENEVOIS C, et al. Enhanced transparency through second phase crystallization in BaAl4O7 scintillating ceramics[J]. Crystal Growth & Design, 2016, 16(1): 386-395. [56] FERNANDEZ-CARRION A J, AL SAGHIR K, VERON E, et al. Local disorder and tunable luminescence in Sr1-x/2Al2-xSixO4 (0.2≤x≤0.5) transparent ceramics[J]. Inorganic Chemistry, 2017, 56(23): 14446-14458. [57] WISNIEWSKI W, FERNÁNDEZ-CARRIÓN A J, SCHÖPPE P, et al. Oriented nucleation and crystal growth in SrO-Al2O3-SiO2 tectosilicate glasses[J]. CrystEngComm, 2018, 20(25): 3455-3466. [58] CASTAING V, MONTEIRO C, SONTAKKE A D, et al. Hexagonal Sr1-x/2Al2-xSixO4∶Eu2+, Dy3+ transparent ceramics with tuneable persistent luminescence properties[J]. Dalton Transactions, 2020, 49(46): 16849-16859. [59] BOYER M, CARRION A J F, ORY S, et al. Transparent polycrystalline SrREGa3O7 melilite ceramics: potential phosphors for tuneable solid state lighting[J]. Journal of Materials Chemistry C, 2016, 4(15): 3238-3247. [60] BOYER M, YANG X Y, CARRIÓN A J F, et al. First transparent oxide ion conducting ceramics synthesized by full crystallization from glass[J]. Journal of Materials Chemistry A, 2018, 6(13): 5276-5289. [61] GENEVOIS C, BAZZAOUI H, BOYER M, et al. Emergence of A-site cation order in the small rare-earth melilites SrREGa3O7 (RE=Dy-Lu, Y)[J]. Inorganic Chemistry, 2021, 60(16): 12339-12354. [62] XU J G, WANG J H, RAKHMATULLIN A, et al. Interstitial oxide ion migration mechanism in aluminate melilite La1+xCa1-xAl3O7+0.5x ceramics synthesized by glass crystallization[J]. ACS Applied Energy Materials, 2019, 2(4): 2878-2888. [63] FAN J T, SAROU-KANIAN V, YANG X Y, et al. La2Ga3O7.5: a metastable ternary melilite with a super-excess of interstitial oxide ions synthesized by direct crystallization of the melt[J]. Chemistry of Materials, 2020, 32(20): 9016-9025. [64] MEI L, LIU G H, HE G, et al. Controlled amorphous crystallization: an easy way to make transparent nanoceramics[J]. Optical Materials, 2012, 34(6): 981-985. [65] MA X G, LI X Y, LI J Q, et al. Pressureless glass crystallization of transparent yttrium aluminum garnet-based nanoceramics[J]. Nature Communications, 2018, 9: 1175. [66] ZHANG Y, MA X G, LI X Y, et al. Crystallization kinetics of Al2O3-26mol%Y2O3 glass and full crystallized transparent Y3Al5O12-based nanoceramic[J]. Journal of the European Ceramic Society, 2021, 41(2): 1557-1563. |