[1] LIU X S, HU M H, CANEAU C G, et al. Thermal management strategies for high power semiconductor pump lasers[J]. IEEE Transactions on Components and Packaging Technologies, 2006, 29(2): 268-276. [2] DAVID A, YOUNG N G, HURNI C A, et al. Quantum efficiency of Ⅲ-nitride emitters: evidence for defect-assisted nonradiative recombination and its effect on the green gap[J]. Physical Review Applied, 2019, 11(3): 031001. [3] TOMM J W, ZIEGLER M, HEMPEL M, et al. Mechanisms and fast kinetics of the catastrophic optical damage (COD) in GaAs-based diode lasers[J]. Laser & Photonics Reviews, 2011, 5(3): 422-441. [4] 杜瀚洋. GaSb基量子阱激光器材料的结构设计与特性表征[D]. 长春: 长春理工大学, 2008. DU H Y. Structure design and characteristic of GaSb substrate multiple quantum-well laser materials[D]. Changchun: Changchun University of Science and Technology, 2008 (in Chinese). [5] 柳建杰. InGaN量子点的制备及应变调控[D]. 太原: 太原理工大学, 2018. LIU J J. Preparation and strain modulation of InGaN quantum dots[D]. Taiyuan: Taiyuan University of Technology, 2018 (in Chinese). [6] LI H, WOLF P, MOSER P, et al. Impact of the quantum well gain-to-cavity etalon wavelength offset on the high temperature performance of high bit rate 980-nm VCSELs[J]. IEEE Journal of Quantum Electronics, 2014, 50(8): 613-621. [7] QIAO Z L, LI X A, WANG H, et al. High-performance 1.06-μm InGaAs/GaAs double-quantum-well semiconductor lasers with asymmetric heterostructure layers[J]. Semiconductor Science and Technology, 2019, 34(5): 055013. [8] MALG A, DBROWSKA E, GRODECKI K. Temperature sensitivity (T0) of tensile-strained GaAsP/(AlGa)As double-barrier separate confinement heterostructure laser diodes for 800 nm band[J]. Journal of Applied Physics, 2008, 103(11): 113109. [9] 孙俊华, 王泉涌. 基于空穴子带合并效应的红外半导体激光器[J]. 激光技术, 2012, 36(6): 663-666. SUN J H, WANG Q Y. Infrared semiconductor laser based on hole subband combining effect[J]. Laser Technology, 2012, 36 (6): 663-666 (in Chinese). [10] 张敬明, 徐俊英, 肖建伟, 等. GaAlAs/GaAs多量子阱激光器结构设计[J]. 半导体学报, 1992, 13(8): 463-468. ZHANG J M, XU J Y, XIAO J W, et al. Structure design for GaAlAs/GaAs multiquantum well lasers[J]. Chinese Journal of Semiconductors, 1992, 13(8): 463-468 (in Chinese). [11] LIU H Y, XU B, WEI Y Q, et al. High-power and long-lifetime InAs/GaAs quantum-dot laser at 1080 nm[J]. Applied Physics Letters, 2001, 79(18): 2868-2870. [12] 王新强, 杜国同, 殷景志, 等. InAsP/InGaP应变补偿量子阱的研究进展[J]. 光电子·激光, 2000, 11(2): 212-215. WANG X Q, DU G T, YIN J Z, et al. Researching development of InAsP/InGaP strain compensated quantum well[J]. Journal of Optoelectronics Laser, 2000, 11(2): 212-215 (in Chinese). [13] LEVY M, BERK Y, KARNI Y. Effect of compressive and tensile strain on the performance of 808-nm QW high power laser diodes[C]//Lasers and Applications in Science and Engineering. Proc SPIE 6104, High-Power Diode Laser Technology and Applications Ⅳ, San Jose, California, USA. 2006, 6104: 93-104. [14] PARK S H. Electronic properties of strain-compensated GaAsSb/GaAs/GaAsP quantum well structures[J]. New Physics: Sae Mulli, 2011, 61(8): 744-749. [15] ZHENG X H, JIANG D S, JOHNSON S, et al. Structural and optical properties of strain-compensated GaAsSb/GaAs quantum wells with high Sb composition[J]. Applied Physics Letters, 2003, 83(20): 4149-4151. [16] JIANG D S, BIAN L F, LIANG X G, et al. Structural and optical properties of GaAsSb/GaAs heterostructure quantum wells[J]. Journal of Crystal Growth, 2004, 268(3/4): 336-341. [17] HUANG C T, WU J D, LIU C F, et al. Optical characterization of a GaAsSb/GaAs/GaAsP strain-compensated quantum well structure grown by metal-organic vapor phase epitaxy[J]. Journal of Crystal Growth, 2013, 370: 182-185. [18] HUANG C T, WU J D, LIU C F, et al. Optical characterization of a strain-compensated GaAs0.64Sb0.36/GaAs0.79P0.21 quantum well structure grown by metal organic vapor phase epitaxy[J]. Materials Chemistry and Physics, 2012, 134(2/3): 797-802. [19] LI T, HAO E, ZHANG Y. High power, 1060-nm diode laser with an asymmetric hetero-waveguide[J]. Quantum Electronics, 2015, 45(7): 607-609. [20] 安 宁, 刘国军, 刘 超, 等. 2 μm InGaAsSb/AlGaAsSb应变补偿量子阱结构的数值研究[J]. 半导体光电, 2015, 36(2): 205-208+212. AN N, LIU G J, LIU C, et al. Numerical study on 2 μm InGaAsSb/AlGaAsSb strain-compensated quantum wells[J]. Semiconductor Optoelectronics, 2015, 36(2): 205-208+212 (in Chinese). [21] 李 特, 郝二娟, 张 月. 非对称异质波导半导体激光器结构[J]. 红外与毫米波学报, 2015, 34(5): 613-618. LI T, HAO E J, ZHANG Y. An asymmetric heterostructure waveguide structure for semiconductor lasers[J]. Journal of Infrared and Millimeter Waves, 2015, 34(5): 613-618 (in Chinese). [22] 贾甜甜. GaN基绿光激光二极管外延结构设计及其光电性能研究[D]. 太原: 太原理工大学, 2021. JIA T T. The design of the epitaxial structure of GaN-based green laser diode and the research on photoelectric performance[D]. Taiyuan: Taiyuan University of Technology, 2021 (in Chinese). [23] HALLMAN L W, RYVKIN B S, AVRUTIN E A, et al. High power-m pulsed laser diode with asymmetric waveguide and active layer near p-cladding[J]. IEEE Photonics Technology Letters, 2019, 31(20): 1635-1638. [24] MALAG A, DABROWSKA E, TEODORCZYK M, et al. Asymmetric heterostructure with reduced distance from active region to heatsink for 810-nm range high-power laser diodes[J]. IEEE Journal of Quantum Electronics, 2012, 48(4): 465-471. [25] BUDA M, HAY J, TAN H H, et al. Low loss, thin p-clad 980-nm InGaAs semiconductor laser diodes with an asymmetric structure design[J]. IEEE Journal of Quantum Electronics, 2003, 39(5): 625-633. [26] 林 琳, 陈宏泰, 徐会武, 等. 976 nm非对称波导结构高效率半导体激光器[J]. 微纳电子技术, 2013, 50(5): 281-285+297. LIN L, CHEN H T, XU H W, et al. High efficiency semiconductor lasers with 976 nm asymmetrical waveguide structures[J]. Micronanoelectronic Technology, 2013, 50(5): 281-285+297 (in Chinese). [27] 李丽娜, 吴金辉, 宋俊峰. 大功率半导体激光器远场特性研究[J]. 发光学报, 2004, 25(1): 95-97+111. LI L N, WU J H, SONG J F. Far-field characteristics of high power laser diode[J]. Chinese Journal of Luminescence, 2004, 25(1): 95-97+111 (in Chinese). [28] CHEN B L, JIANG W Y, HOLMES A L Jr. Design of strain compensated InGaAs/GaAsSb type-Ⅱ quantum well structures for mid-infrared photodiodes[J]. Optical and Quantum Electronics, 2012, 44(3): 103-109. [29] SUKHOIVANOV I A, MASHOSHYNA O V, KONONENKO V K, et al. How to restrain Auger recombination predominance in the threshold of asymmetric bi-quantum-well lasers[J]. Microelectronics Journal, 2005, 36(3/4/5/6): 264-268. [30] GALLER B, LUGAUER H J, BINDER M, et al. Experimental determination of the dominant type of auger recombination in InGaN quantum wells[J]. Applied Physics Express, 2013, 6(11): 112101. [31] MEYER J R, HOFFMAN C A, BARTOLI F J, et al. Type-Ⅱ quantum-well lasers for the mid-wavelength infrared[J]. Applied Physics Letters, 1995, 67(6): 757-759. [32] YUAN Q H, JING H Q, ZHONG L, et al. High performance 9xx nm high power semiconductor laser[J]. Chinese Journal of Luminescence, 2020, 41(2): 194-198. [33] WU S H, LI T, WANG Z F, et al. Study of temperature effects on the design of active region for 808 nm high-power semiconductor laser[J]. Crystals, 2023, 13(1): 85. [34] BONORA S, PILAR J, LUCIANETTI A, et al. Design of deformable mirrors for high power lasers[J]. High Power Laser Science and Engineering, 2016, 4: e16. [35] RUIZ M, ODRIOZOLA H, KWOK C H, et al. High-brightness tapered lasers with an Al-free active region at 1060 nm[C]//SPIE OPTO: Integrated Optoelectronic Devices. Proc SPIE 7230, Novel in-Plane Semiconductor Lasers Ⅷ, San Jose, California, USA. 2009, 7230: 267-274. [36] CAI J, KANSKAR M. 67% CW power conversion efficiency from Al-free 1 060 nm emitting diode lasers[J]. Electronics Letters, 2009, 45(13): 680. [37] GORAI A, PANDA S, BISWAS D. Advantages of InGaN/InGaN quantum well light emitting diodes: better electron-hole overlap and stable output[J]. Optik, 2017, 140: 665-672. [38] TANSU N, MAWST L J. Design analysis of 1550-nm GaAsSb-(In)GaAsN type-Ⅱ quantum-well laser active regions[J]. IEEE Journal of Quantum Electronics, 2003, 39(10): 1205-1210. [39] MOTYKA M, RYCZKO K, SK G, et al. Type Ⅱ quantum wells on GaSb substrate designed for laser-based gas sensing applications in a broad range of mid infrared[J]. Optical Materials, 2012, 34(7): 1107-1111. [40] 谭少阳, 王 皓, 张瑞康, 等. 大功率高光束质量1060 nm大光腔非对称波导半导体激光二极管[J]. 光学学报, 2015, 35(增刊): 238-242. TAN S Y, WANG H, ZHANG R K, et al. High power high beam quality 1060 nm large optical cavity asymmetric waveguide semiconductor laser diode[J]. Acta Optica Sinica, 2015, 35(supplement): 238-242 (in Chinese). [41] 张永棠. 一种高效率的1060 nm半导体激光器设计[J]. 电子器件, 2018, 41(6): 1357-1361. ZHANG Y T. A high efficiency 1060 nm semiconductor laser design[J]. Chinese Journal of Electron Devices, 2018, 41(6): 1357-1361 (in Chinese). [42] 孙 可, 王健华, 彭吉虎. InGaAs/InGaAlAs应变补偿量子阱激光器及其温度特性研究[J]. 高技术通讯, 2000, 10(2): 50-52. SUN K, WANG J H, PENG J H. InGaAs/InGaAlAs Strain compensated multiple-quantum well lasers with improved temperature characteristic[J]. High Technology Letters, 2000, 10(2): 50-52 (in Chinese). [43] RYVKIN B S, AVRUTIN E A, KOSTAMOVAARA J T. Asymmetric-waveguide, short cavity designs with a bulk active layer for high pulsed power eye-safe spectral range laser diodes[J]. Semiconductor Science and Technology, 2020, 35(8): 085008. [44] SUKHOIVANOV I A, MASHOSHINA O V, KONONENKO V K, et al. Temperature dependence of the threshold and auger recombination in asymmetric quantum-well heterolasers[C]//5th International Workshop on Laser and Fiber-Optical Networks Modeling, 2003. Proceedings of LFNM. September 19-20, 2003, Alushta, Ukraine. IEEE, 2003: 255-258. [45] WANG H L, ZHONG L, HOU J D, et al. 1.06 μm high-power InGaAs/GaAsP quantum well lasers[J]. Journal of Semiconductors, 2017, 38(11): 114005. [46] LIN X, DAI X L, YE Z K, et al. Highly-efficient thermoelectric-driven light-emitting diodes based on colloidal quantum dots[J]. Nano Research, 2022, 15(10): 9402-9409. |