[1] SUN Y Q, KANG W Y, CHEN H N, et al. Selection of growth monomers on the 4H-SiC (0001) atomic step surfaces: from the first-principles calculations to homo-epitaxy verification[J]. Applied Surface Science, 2022, 606: 154949. [2] MUSOLINO M, XU X P, WANG H, et al. Paving the way toward the world’s first 200 mm SiC pilot line[J]. Materials Science in Semiconductor Processing, 2021, 135: 106088. [3] LUO H, LI J J, YANG G, et al. Electronic and optical properties of threading dislocations in n-type 4H-SiC[J]. ACS Applied Electronic Materials, 2022, 4(4): 1678-1683. [4] QIAN X, JIANG P Q, YANG R G. Anisotropic thermal conductivity of 4H and 6H silicon carbide measured using time-domain thermoreflectance[J]. Materials Today Physics, 2017, 3: 70-75. [5] WANG G B, SHENG D, LI H, et al. Influence of interfacial energy on the growth of SiC single crystals from high temperature solutions[J]. CrystEngComm, 2023, 25(4): 560-566. [6] 李国峰, 陈泓谕, 杭 伟, 等. 碳化硅晶圆的表面/亚表面损伤研究进展[J]. 人工晶体学报, 2023, 52(11): 1907-1921. LI G F, CHEN H Y, HANG W, et al. Research progress on surface/subsurface damages of 4H silicon carbide wafers[J]. Journal of Synthetic Crystals, 2023, 52(11): 1907-1921 (in Chinese). [7] LI Y, ZHAO Z F, YU L, et al. Reduction of morphological defects in 4H-SiC epitaxial layers[J]. Journal of Crystal Growth, 2019, 506: 108-113. [8] 高 飞, 徐永宽, 程红娟, 等. 4H-SiC(0001)硅面原子级平整抛光方法[J]. 微纳电子技术, 2014, 51(9): 610-614. GAO F, XU Y K, CHENG H J, et al. Atomic-scale flattening polishing method of 4H-SiC (0001) Si face[J]. Micronanoelectronic Technology, 2014, 51(9): 610-614 (in Chinese). [9] MASUMOTO K, SENZAKI J, HASEGAWA M, et al. Influence of CMP damage induced during flattening SiC epitaxial layer on device performances[J]. Materials Science in Semiconductor Processing, 2020, 116: 105162. [10] ZHOU Y Q, HUANG Y H, LI J M, et al. Polishing process of 4H-SiC under different pressures in a water environment[J]. Diamond and Related Materials, 2023, 133: 109710. [11] CHEN J H, GUAN M, YANG S Y, et al. Characterization of epitaxial layers grown on 4H-SiC (000-1) substrates[J]. Journal of Crystal Growth, 2023, 604: 127048. [12] SATO T, MATSUMOTO H, SUZUKI S, et al. Crystal defect analysis of latent scratch induced during CMP process on 4H-SiC wafer using electron microscopy[J]. Materials Science Forum, 2018, 924: 531-534. [13] 娄艳芳, 巩拓谌, 张 文, 等. 8英寸导电型4H-SiC单晶衬底制备与表征[J]. 人工晶体学报, 2022, 51(12): 2131-2136. LOU Y F, GONG T C, ZHANG W, et al. Fabrication and characterizations of 8-inch n type 4H-SiC single crystal substrate[J]. Journal of Synthetic Crystals, 2022, 51(12): 2131-2136 (in Chinese). [14] ISSHIKI T, HASEGAWA M, SATO T, et al. Observation of a latent scratch on chemo-mechanical polished 4H-SiC wafer by mirror projection electron microscopy[J]. Materials Science Forum, 2018, 924: 543-546. [15] ZHAO S Q, CHEN J H, YANG S Y, et al. Effect of temperature on growth of epitaxial layer on semi-insulating 4H-SiC substrate[J]. Journal of Crystal Growth, 2023, 603: 127008. [16] BAN X X, TIAN Z Z, ZHU J H, et al. Compound mechanical and chemical-mechanical polishing processing technique for single-crystal silicon carbide[J]. Precision Engineering, 2024, 86: 160-169. [17] GUO F L, SHAO C, CHEN X F, et al. Shape modulation due to sub-surface damage difference on N-type 4H-SiC wafer during lapping and polishing[J]. Materials Science in Semiconductor Processing, 2022, 152: 107124. [18] NAKASHIMA S I, MITANI T, TOMOBE M, et al. Raman characterization of damaged layers of 4H-SiC induced by scratching[J]. AIP Advances, 2016, 6(1): 015207. [19] SASAKI M, MATSUHATA H, TAMURA K, et al. Synchrotron X-ray topography analysis of local damage occurring during polishing of 4H-SiC wafers[J]. Japanese Journal of Applied Physics, 2015, 54(9): 091301. [20] ZHANG Z S, CAI H, GAN D, et al. A new method to characterize underlying scratches on SiC wafers[J]. CrystEngComm, 2019, 21(7): 1200-1204. [21] LOSURDO M, BRUNO G, BROWN A, et al. Study of the temperature-dependent interaction of 4H-SiC and 6H-SiC surfaces with atomic hydrogen[J]. Applied Physics Letters, 2004, 84(20): 4011-4013. [22] ZHENG D, XU M L, WANG J, et al. Nonisothermal crystallization kinetics of potassium chloride produced by stirred crystallization[J]. Journal of Crystal Growth, 2023, 603: 127035. |