人工晶体学报 ›› 2024, Vol. 53 ›› Issue (11): 1840-1867.
吉浩浩1, 陈念江2, 章健1,3, 杨彧涵4, 刘禹4, 王士维1,3
收稿日期:
2024-09-15
出版日期:
2024-11-15
发布日期:
2024-12-09
通信作者:
章 健,博士,研究员。E-mail:jianzhang@mail.sic.ac.cn;刘 禹,博士,教授。E-mail:yuliu@jiangnan.edu.cn
作者简介:
吉浩浩(1995—),男,河南省人,博士,助理研究员。E-mail:jihaohao@mail.sic.ac.cn
基金资助:
JI Haohao1, CHEN Nianjiang2, ZHANG Jian1,3, YANG Yuhan4, LIU Yu4, WANG Shiwei1,3
Received:
2024-09-15
Online:
2024-11-15
Published:
2024-12-09
摘要: 先进固体激光器的发展方向是更高的输出功率和更优异的光束质量。稀土离子掺杂钇铝石榴石透明陶瓷是固体激光增益介质的优选材料,但泵浦过程中的热效应问题劣化光束质量,阻碍了输出功率进一步提升。复杂构型激光陶瓷泵浦时产热和散热更均匀,能够显著降低热效应。相比于传统制备方法,3D打印能够成型更复杂的设计结构,抑制热效应,并实现多模块器件的集成化和小型化,推动激光器走向更广泛的应用。本文首先介绍了复杂构型激光陶瓷的几种传统制备方法,并分析了优点和局限性。然后,系统综述了3D打印制备钇铝石榴石基激光陶瓷的研究现状和存在的问题。3D打印方法包括直接墨水书写、立体光刻、数字光处理、材料喷射打印、双光子聚合和微连续液体界面打印。其中,立体光刻和数字光处理成型的样品中存在层间缺陷,导致严重的散射损耗;材料喷射打印结合干压成型可用于制造平面波导;双光子聚合和微连续液体界面打印适用于在微米尺度上制造高度复杂的结构;直接墨水书写不仅首次实现了激光陶瓷的制备,相关研究也最为广泛,目前是制备复杂构型激光陶瓷最有前景的方法。最后,对3D打印制备钇铝石榴石基激光陶瓷目前存在的问题和研究前景进行了总结。
中图分类号:
吉浩浩, 陈念江, 章健, 杨彧涵, 刘禹, 王士维. 3D打印钇铝石榴石基激光陶瓷研究进展[J]. 人工晶体学报, 2024, 53(11): 1840-1867.
JI Haohao, CHEN Nianjiang, ZHANG Jian, YANG Yuhan, LIU Yu, WANG Shiwei. Research Progress of 3D Printing Yttrium Aluminum Garnet-Based Laser Ceramics[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(11): 1840-1867.
[1] QIN L, HUANG Y Q, XIA F, et al. 5 nm nanogap electrodes and arrays by super-resolution laser lithography[J]. Nano Letters, 2020, 20(7): 4916-4923. [2] SANKEY E W, GRABOWSKI M M, SRINIVASAN E S, et al. Time to steroid independence after laser interstitial thermal therapy vs medical management for treatment of biopsy-proven radiation necrosis secondary to stereotactic radiosurgery for brain metastasis[J]. Neurosurgery, 2022, 90(6): 684-690. [3] WANG S F, ZHANG J, LUO D W, et al. Transparent ceramics: processing, materials and applications[J]. Progress in Solid State Chemistry, 2013, 41(1/2): 20-54. [4] GOLDSTEIN A, KRELL A. Transparent ceramics at 50: progress made and further prospects[J]. Journal of the American Ceramic Society, 2016, 99(10): 3173-3197. [5] LUPEI V, LUPEI A. Nd∶YAG at its 50th anniversary: still to learn[J]. Journal of Luminescence, 2016, 169: 426-439. [6] IKESUE A, AUNG Y L. Ceramic laser materials[J]. Nature Photonics, 2008, 2(12): 721-727. [7] SANGHERA J, KIM W, VILLALOBOS G, et al. Ceramic laser materials: past and present[J]. Optical Materials, 2013, 35(4): 693-699. [8] IKESUE A, KINOSHITA T, KAMATA K, et al. Fabrication and optical properties of high-performance polycrystalline Nd∶YAG ceramics for solid-state lasers[J]. Journal of the American Ceramic Society, 1995, 78(4): 1033-1040. [9] MANDL A, KLIMEK D E. Textron’s J-HPSSL 100 kW thinzag® laser program[C]//Conference on Lasers and Electro-Optics 2010. San Jose, California. Washington, D.C.: OSA, 2010: JThH. [10] MANGIR M, ROCKWELL D. Measurements of heating and energy storage in flashlamp-pumped Nd∶YAG and Nd-doped phosphate laser glasses[J]. IEEE Journal of Quantum Electronics, 1986, 22(4): 574-580. [11] MACDONALD M P, GRAF T, BALMER J E, et al. Reducing thermal lensing in diode-pumped laser rods[J]. Optics Communications, 2000, 178(4/5/6): 383-393. [12] KOECHNER W. Thermal lensing in a Nd∶YAG laser rod[J]. Applied Optics, 1970, 9(11): 2548-2553. [13] CHEN Y, CHEN B, PATEL M K R, et al. Calculation of thermal-gradient-induced stress birefringence in slab lasers-I[J]. IEEE Journal of Quantum Electronics, 2004, 40(7): 909-916. [14] MARTIN W S, CHERNOCH J P. Multiple internal reflection face-pumped laser: US3633126[P]. 1972-01-04. [15] 齐恩宇. 传导冷却端面泵浦板条式激光器谐振腔技术研究[D]. 长沙: 国防科学技术大学, 2009. QI E Y. Study on resonator technology of conduction cooling end-pumped slab laser[D]. Changsha: National University of Defense Technology, 2009 (in Chinese). [16] GIESEN A, HÜGEL H, VOSS A, et al. Scalable concept for diode-pumped high-power solid-state lasers[J]. Applied Physics B, 1994, 58(5): 365-372. [17] LU J R, UEDA K I, YAGI H, et al. Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials[J]. Journal of Alloys and Compounds, 2002, 341(1/2): 220-225. [18] HOSTAŠA J, PIANCASTELLI A, TOCI G, et al. Transparent layered YAG ceramics with structured Yb doping produced via tape casting[J]. Optical Materials, 2017, 65: 21-27. [19] YOSHIDA K, ISHII H, KUMADA T, et al. All-ceramic composite with layer-by-layer structure by advanced ceramic technology[C]//Laser-Induced Damage in Optical Materials: 2004. Boulder, CO. SPIE, 2005, 5647: 247-254. [20] 刘 洋, 唐晓军, 王 喆, 等. 激光二极管端面抽运Nd∶YAG表层增益板条激光器[J]. 中国激光, 2016, 43(10): 1001004. LIU Y, TANG X J, WANG Z, et al. Laser diode end pumped Nd∶YAG surface gain slab lasers[J]. Chinese Journal of Lasers, 2016, 43(10): 1001004 (in Chinese). [21] GRIVAS C. Optically pumped planar waveguide lasers, part I: fundamentals and fabrication techniques[J]. Progress in Quantum Electronics, 2011, 35(6): 159-239. [22] IKESUE A, AUNG Y L, KAMIMURA T, et al. Composite laser ceramics by advanced bonding technology[J]. Materials, 2018, 11(2): 271. [23] FURUSE H, KAWANAKA J, TAKESHITA K, et al. Total-reflection active-mirror laser with cryogenic Yb∶YAG ceramics[J]. Optics Letters, 2009, 34(21): 3439-3441. [24] FURUSE H, KAWANAKA J, MIYANAGA N, et al. Zig-zag active-mirror laser with cryogenic Yb3+∶YAG/YAG composite ceramics[J]. Optics Express, 2011, 19(3): 2448-2455. [25] IKESUE A, AUNG Y L. Synthesis and performance of advanced ceramic lasers[C]//2007 Conference on Lasers and Electro-Optics (CLEO). May 6-11, 2007, Baltimore, MD, USA. IEEE, 2007: 1-2. [26] LI M, HU H, GAO Q S, et al. A 7.08-kW YAG/Nd∶YAG/YAG composite ceramic slab laser with dual concentration doping[J]. IEEE Photonics Journal, 2017, 9(4): 1504010. [27] HOWATT G N, BRECKENRIDGE R G, BROWNLOW J M. Fabrication of thin ceramic sheets for capacitors[J]. Journal of the American Ceramic Society, 1947, 30(8): 237-242. [28] GE L, LI J, ZHOU Z W, et al. Fabrication of composite YAG/Nd∶YAG/YAG transparent ceramics for planar waveguide laser[J]. Optical Materials Express, 2014, 4(5): 1042. [29] GE L, LI J, QU H Y, et al. Densification behavior, doping profile and planar waveguide laser performance of the tape casting YAG/Nd∶YAG/YAG ceramics[J]. Optical Materials, 2016, 60: 221-229. [30] KUPP E R, MESSING G L, ANDERSON J M, et al. Co-casting and optical characteristics of transparent segmented composite Er∶YAG laser ceramics[J]. Journal of Materials Research, 2010, 25(3): 476-483. [31] TER-GABRIELYAN N, MERKLE L D, KUPP E R, et al. Efficient resonantly pumped tape cast composite ceramic Er∶YAG laser at 1645 nm[J]. Optics Letters, 2010, 35(7): 922-924. [32] KOKKINIS D, SCHAFFNER M, STUDART A R. Multimaterial magnetically assisted 3D printing of composite materials[J]. Nature Communications, 2015, 6: 8643. [33] OBER T J, FORESTI D, LEWIS J A. Active mixing of complex fluids at the microscale[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(40): 12293-12298. [34] ORTEGA J M, GOLOBIC M, SAIN J D, et al. Active mixing of disparate inks for multimaterial 3D printing[J]. Advanced Materials Technologies, 2019, 4(7): 1800717. [35] LI W B, ARMANI A, MARTIN A, et al. Extrusion-based additive manufacturing of functionally graded ceramics[J]. Journal of the European Ceramic Society, 2021, 41(3): 2049-2057. [36] JONES I K, SEELEY Z M, CHEREPY N J, et al. Direct ink write fabrication of transparent ceramic gain media[J]. Optical Materials, 2018, 75: 19-25. [37] SEELEY Z M, RUDZIK T J, PHILLIPS I R, et al. Additive manufacturing of transparent ceramic laser gain media-rods, thin disks, and planar waveguides[C]//Laser Congress 2020 (ASSL, LAC). Washington, D.C.: Optica Publishing Group, 2020: AW1A.1. [38] ZELMON D E, SCHEPLER K L, GUHA S, et al. Optical properties of Nd-doped ceramic yttrium aluminum garnet[C]//Laser-Induced Damage in Optical Materials: 2004. Boulder, CO. SPIE, 2005, 5647: 255-264. [39] MU X D, MEISSNER H, LEE H C, et al. True crystalline fibers: double-clad LMA design concept of Tm∶YAG-core fiber and its mode simulation[C]//Fiber Lasers IX: Technology, Systems, and Applications. San Francisco, California, USA. SPIE, 2012: 8237. [40] SEELEY Z, YEE T, CHEREPY N, et al. 3D printed transparent ceramic YAG laser rods: matching the core-clad refractive index[J]. Optical Materials, 2020, 107: 110121. [41] ZHANG G R, CARLONI D, WU Y Q. 3D printing of transparent YAG ceramics using copolymer-assisted slurry[J]. Ceramics International, 2020, 46(10): 17130-17134. [42] YANG Y, SHIMAI S, WANG S W. Room-temperature gelcasting of alumina with a water-soluble copolymer[J]. Journal of Materials Research, 2013, 28(11): 1512-1516. [43] SUN Y, SHIMAI S, PENG X, et al. A method for gelcasting high-strength alumina ceramics with low shrinkage[J]. Journal of Materials Research, 2014, 29(2): 247-251. [44] CHEN H, SHIMAI S, ZHAO J, et al. Hydrophobic coagulation of alumina slurries[J]. Journal of the American Ceramic Society, 2021, 104(1): 284-293. [45] OSBORNE R A, WINEGER T J, et al. Fabrication of engineered dopant profiles in Er/Lu∶YAG transparent laser ceramics via additive manufacturing[J]. Optical Materials Express, 2023, 13(2): 526. [46] SCHWENTENWEIN M, HOMA J. Additive manufacturing of dense alumina ceramics[J]. International Journal of Applied Ceramic Technology, 2015, 12(1): 1-7. [47] BIAN W G, LI D C, LIAN Q, et al. Fabrication of a bio-inspired beta-tricalcium phosphate/collagen scaffold based on ceramic stereolithography and gel casting for osteochondral tissue engineering[J]. Rapid Prototyping Journal, 2012, 18(1): 68-80. [48] CHEN Z, LI D, ZHOU W, et al. Curing characteristics of ceramic stereolithography for an aqueous-based silica suspension[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2010, 224(4): 641-651. [49] CHU T M G, ORTON D G, HOLLISTER S J, et al. Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures[J]. Biomaterials, 2002, 23(5): 1283-1293. [50] CHARTIER T, DUTERTE C, DELHOTE N, et al. Fabrication of millimeter wave components via ceramic stereo- and microstereolithography processes[J]. Journal of the American Ceramic Society, 2008, 91(8): 2469-2474. [51] HOSTAŠA J, SCHWENTENWEIN M, TOCI G, et al. Transparent laser ceramics by stereolithography[J]. Scripta Materialia, 2020, 187: 194-196. [52] ZHANG G R, WU Y Q. Three-dimensional printing of transparent ceramics by lithography-based digital projection[J]. Additive Manufacturing, 2021, 47: 102271. [53] SHEN Y R, SUN Y, JIN B C, et al. Effect of debinding and sintering profile on the optical properties of DLP-3D printed YAG transparent ceramic[J]. Ceramics International, 2022, 48(15): 21134-21140. [54] 胡 松, 唐雨馨, 周国红, 等. 光固化3D打印钇铝石榴石透明陶瓷及其微结构调控[J]. 硅酸盐学报, 2024, 52(3): 882-889. HU S, TANG Y X, ZHOU G H, et al. Digital light processing 3D printing of Y3Al5O12 transparent ceramics and microstructure regulation[J]. Journal of the Chinese Ceramic Society, 2024, 52(3): 882-889 (in Chinese). [55] SEELEY Z M, PHILLIPS I R, RUDZIK T J, et al. Material jet printing of transparent ceramic Yb∶YAG planar waveguides[J]. Optics Letters, 2021, 46(10): 2433-2436. [56] BROWN C T A, BONNER C L, WARBURTON T J, et al. Thermally bonded planar waveguide lasers[J]. Applied Physics Letters, 1997, 71(9): 1139-1141. [57] ZHOU B B, WEI Z Y, ZOU Y W, et al. High-efficiency diode-pumped femtosecond Yb∶YAG ceramic laser[J]. Optics Letters, 2010, 35(3): 288-290. [58] WANG J T, WU Z H, SU H, et al. 1.5 kW efficient CW Nd∶YAG planar waveguide MOPA laser[J]. Optics Letters, 2017, 42(16): 3149-3152. [59] DYBOWSKA-SARAPUK L, KIELBASINSKI K, ARAZNA A, et al. Efficient inkjet printing of graphene-based elements: influence of dispersing agent on ink viscosity[J]. Nanomaterials, 2018, 8(8): 602. [60] MCKINLEY, RENARDY. Wolfgang von ohnesorge[J]. Physics of Fluids, 2011, 23(12): 127101-1-127101-6. [61] JUNG R, TÜMMLER J, NUBBEMEYER T, et al. Thin-disk ring amplifier for high pulse energy[J]. Optics Express, 2016, 24(5): 4375-4381. [62] HERKOMMER C, KRÖTZ P, JUNG R, et al. Ultrafast thin-disk multipass amplifier with 720 mJ operating at kilohertz repetition rate for applications in atmospheric research[J]. Optics Express, 2020, 28(20): 30164. [63] ZAPATA L E. Cryogenic composite disk laser for peak and average power scaling[C]//CLEO: 2014. San Jose, California. Washington, D.C.: OSA, 2014: SM1F.1. [64] KUZNETSOV I, MUKHIN I, PALASHOV O. High-power thin-disk laser with composite Yb∶YAG/YAG active element[C]//2014 International Conference Laser Optics. June 30 - July 4, 2014, St. Petersburg, Russia. IEEE, 2014: 1. [65] RUDZIK T J, SEELEY Z M, DROBSHOFF A D, et al. Additively manufactured transparent ceramic thin disk gain medium[J]. Optical Materials Express, 2022, 12(9): 3648. [66] KAWATA S, SUN H B, TANAKA T, et al. Finer features for functional microdevices-micromachines can be created with higher resolution using two-photon absorption. [J]. Nature, 2001, 412(6848): 697-698. [67] TUMBLESTON J R, SHIRVANYANTS D, ERMOSHKIN N, et al. Continuous liquid interface production of 3D objects[J]. Science, 2015, 347(6228): 1349-1352. [68] OTUKA A J G, TOMAZIO N B, PAULA K T, et al. Two-photon polymerization: functionalized microstructures, micro-resonators, and bio-scaffolds[J]. Polymers, 2021, 13(12): 1994. [69] BARNER-KOWOLLIK C, BASTMEYER M, BLASCO E, et al. 3D laser micro- and nanoprinting: challenges for chemistry[J]. Angewandte Chemie International Edition, 2017, 56(50): 15828-15845. [70] COOPERSTEIN I, INDUKURI S R K C, BOUKETOV A, et al. 3D printing of micrometer-sized transparent ceramics with on-demand optical-gain properties[J]. Advanced Materials, 2020, 32(28): e2001675. [71] GUO X Z, LI W Y, NAKANISHI K, et al. Preparation of mullite monoliths with well-defined macropores and mesostructured skeletons via the Sol-gel process accompanied by phase separation[J]. Journal of the European Ceramic Society, 2013, 33(10): 1967-1974. [72] TOKUDOME Y, FUJITA K, NAKANISHI K, et al. Sol-gel synthesis of macroporous YAG from ionic precursors via phase separation route[J]. Journal of the Ceramic Society of Japan, 2007, 115(1348): 925-928. [73] POKHREL M, RAY N, KUMAR G A, et al. Comparative studies of the spectroscopic properties of Nd3+∶YAG nanocrystals, transparent ceramic and single crystal[J]. Optical Materials Express, 2012, 2(3): 235. [74] KOTZ F, QUICK A S, RISCH P, et al. Two-photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructures[J]. Advanced Materials, 2021, 33(9): 2006341. [75] YANG J, YIN T L, XU W M, et al. Reproductive outcome of septate uterus after hysteroscopic treatment with neodymium: YAG laser[J]. Photomedicine and Laser Surgery, 2006, 24(5): 625. [76] LIU L Y, WANG W B, FENG S, et al. Rapid, micron-resolution 3D printing of Nd∶YAG ceramic with optical gain[J]. Small, 2024, 20(36): 2403130. [77] LIU L Y, LIU S Y, SCHELP M, et al. Rapid 3D printing of bioinspired hybrid structures for high-efficiency fog collection and water transportation[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 29122-29129. [78] SHAO G B, HAI R H, SUN C. 3D printing customized optical lens in minutes[J]. Advanced Optical Materials, 2020, 8(4): 1901646. [79] WAN Y S, KWONG J, BRANDES H G, et al. Influence of amorphous clay-size materials on soil plasticity and shrink-swell behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(12): 1026-1031. [80] CHAN S S L, PENNINGS R M, EDWARDS L, et al. 3D printing of clay for decorative architectural applications: effect of solids volume fraction on rheology and printability[J]. Additive Manufacturing, 2020, 35: 101335. [81] KHAN A U, BRISCOE B J, LUCKHAM P F. Evaluation of slip in capillary extrusion of ceramic pastes[J]. Journal of the European Ceramic Society, 2001, 21(4): 483-491. [82] THIBAUT C, DENNEULIN A, ROLLAND DU ROSCOAT S, et al. A fibrous cellulose paste formulation to manufacture structural parts using 3D printing by extrusion[J]. Carbohydrate Polymers, 2019, 212: 119-128. [83] SUN Y H, PENG C Q, WANG X F, et al. Rheological behavior of Al2O3 suspensions containing polyelectrolyte complexes for direct ink writing[J]. Powder Technology, 2017, 320: 223-229. [84] SUN Y H, PENG C Q, WANG X F, et al. Phase behavior of polyelectrolyte complexes and rheological behavior of alumina suspensions for direct ink writing[J]. Journal of the American Ceramic Society, 2016, 99(6): 1902-1910. [85] CAI J, LV A, ZHOU J P, et al. Cellulose science and materials [M]. Beijing: Chemical Industry Press, 2015. [86] JI H H, ZHAO J, CHEN J, et al. Direct ink writing of cellulose-plasticized aqueous ceramic slurry for YAG transparent ceramics[J]. MRS Communications, 2022, 12(2): 206-212. [87] YUE Z L, LIU X, COATES P T, et al. Advances in printing biomaterials and living cells: implications for islet cell transplantation[J]. Current Opinion in Organ Transplantation, 2016, 21(5): 467-475. [88] DONDERWINKEL I, VAN HEST J C M, CAMERON N R. Bio-inks for 3D bioprinting: recent advances and future prospects[J]. Polymer Chemistry, 2017, 8(31): 4451-4471. [89] SEOL Y J, KANG H W, LEE S J, et al. Bioprinting technology and its applications[J]. European Journal of Cardio-Thoracic Surgery, 2014, 46(3): 342-348. [90] SMAY J E, CESARANO J, LEWIS J A. Colloidal inks for directed assembly of 3-D periodic structures[J]. Langmuir, 2002, 18(14): 5429-5437. [91] CORKER A, NG H C H, POOLE R J, et al. 3D printing with 2D colloids: designing rheology protocols to predict ‘printability’ of soft-materials[J]. Soft Matter, 2019, 15(6): 1444-1456. [92] M’BARKI A, BOCQUET L, STEVENSON A. Linking rheology and printability for dense and strong ceramics by direct ink writing[J]. Scientific Reports, 2017, 7(1): 6017. [93] MINAS C, CARNELLI D, TERVOORT E, et al. 3D printing of emulsions and foams into hierarchical porous ceramics[J]. Advanced Materials, 2016, 28(45): 9993-9999. [94] JI H H, ZHAO J, CHEN J, et al. A novel experimental approach to quantitatively evaluate the printability of inks in 3D printing using two criteria[J]. Additive Manufacturing, 2022, 55: 102846. [95] PELZ J S, KU N, SHOULDERS W T, et al. Multi-material additive manufacturing of functionally graded carbide ceramics via active, in-line mixing[J]. Additive Manufacturing, 2021, 37: 101647. [96] XIE M M, JI H H, WANG D W, et al. 3D printing of gradient-doped Yb∶YAG laser ceramics by leveraging active mixing[J]. Additive Manufacturing Frontiers, 2024, 3(1): 200118. [97] CHEN J, JI H H, ZHANG J, et al. Fabrication of YAG ceramic tube by UV-assisted direct ink writing[J]. Ceramics International, 2022, 48(14): 19703-19708. [98] WANG H R, GAO W L, ZHANG J. Inkjet printing of Yb∶YAG transparent ceramic planar waveguide laser gain medium [J]. Advanced Photonics Research, 2024, 5(8): 2300320. |
[1] | 雷莎莎, 龚巧瑞, 赵呈春, 孙晓慧, 杭寅. 宽禁带半导体ZnGa2O4研究进展[J]. 人工晶体学报, 2024, 53(8): 1289-1301. |
[2] | 董玉娟, 刘召江, 朱绮睿. 黄光发射纯Zn3V2O8荧光粉的制备及光学性能研究[J]. 人工晶体学报, 2024, 53(8): 1416-1421. |
[3] | 凌昊, 徐乐, 陈思贤, 唐远之, 孙海滨, 郭学, 冯玉润, 胡强强. 溶液法生长大尺寸CsCu2I3钙钛矿单晶及其光学性能研究[J]. 人工晶体学报, 2024, 53(7): 1121-1126. |
[4] | 黄秋凤, 邓志强, 陈剑, 郭旺, 邓种华, 刘著光, 黄集权. Cr掺杂YAG透明陶瓷的价态调控及光学性能研究[J]. 人工晶体学报, 2024, 53(11): 1909-1917. |
[5] | 冯桂青, 徐刘伟, 袁亚舟, 郑熠, 黄鑫, 陈旻, 王帅华, 吴少凡. 稀土离子过量掺杂TSAG及YAG/TSAG复合结构透明陶瓷的制备与性能研究[J]. 人工晶体学报, 2024, 53(11): 1944-1955. |
[6] | 王云杰, 文杜林, 苏欣. A3PO4(A=Li,Na,K,Rb,Cs)电子结构与光学性质的第一性原理研究[J]. 人工晶体学报, 2024, 53(1): 123-131. |
[7] | 詹廷吾, 贾伟, 董海亮, 李天保, 贾志刚, 许并社. 多孔GaN薄膜的制备与光学性能研究[J]. 人工晶体学报, 2023, 52(9): 1599-1608. |
[8] | 张平威, 林龙, 张战营. 基于第一性原理的Au、Cu、Sb掺杂CdTe的结构模拟和光学性能预测[J]. 人工晶体学报, 2023, 52(8): 1400-1406. |
[9] | 李琳, 谭慧瑜, 郑为比, 谭俊成, 李真, 张沛雄, 陈振强. Er掺杂CGA晶体的生长及浓度优化研究[J]. 人工晶体学报, 2023, 52(7): 1325-1334. |
[10] | 李兴旺, 杨宇, 芦佳, 董畅, 王永国, 徐学珍. 大尺寸氟化铽锂晶体生长与性能[J]. 人工晶体学报, 2023, 52(7): 1352-1356. |
[11] | 陶争, 伍志业, 娄佳明, 王威廉, 张宇欣, 邓勇, 邓文. 不同直径Cr∶Al2O3圆柱晶体的制备及其光学性能研究[J]. 人工晶体学报, 2023, 52(7): 1364-1370. |
[12] | 李兴旺, 杨国利, 韩剑锋, 王永国, 毕海, 徐学珍. 提拉法生长直径10英寸优质Yb:YAG激光晶体[J]. 人工晶体学报, 2023, 52(4): 547-549. |
[13] | 赵呈春, 张沛雄, 李善明, 房倩楠, 徐民, 陈振强, 杭寅. 稀土离子掺杂氟化物激光晶体研究进展[J]. 人工晶体学报, 2022, 51(9-10): 1573-1587. |
[14] | 何楠, 公丕富, 林哲帅. A7MIIRE2(B5O10)3系列紫外非线性光学晶体的研究进展[J]. 人工晶体学报, 2022, 51(9-10): 1598-1607. |
[15] | 赵鑫, 刘粉红, 张晓东, 刘昌龙. 射频磁控溅射氧气流量对制备的Ga2O3∶Cr薄膜光致发光性能的影响[J]. 人工晶体学报, 2022, 51(8): 1353-1360. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||