[1] MA J, QIN Z P, XIE G Q, et al. Review of mid-infrared mode-locked laser sources in the 2.0 μm-3.5 μm spectral region[J]. 2019, 6(2): 021317. [2] SOONG H K, MALTA J B. Femtosecond lasers in ophthalmology[J]. American Journal of Ophthalmology, 2009, 147(2): 189-197. [3] LI J F, HUDSON D D, JACKSON S D. High-power diode-pumped fiber laser operating at 3 μm[J]. Optics Letters, 2011, 36(18): 3642-3644. [4] LAMMERT A, BÖSENBERG J. Determination of the convective boundary-layer height with laser remote sensing[J]. Boundary-Layer Meteorology, 2006, 119(1): 159-170. [5] LIU Z Y, IKESUE A, LI J. Research progress and prospects of rare-earth doped sesquioxide laser ceramics[J]. Journal of the European Ceramic Society, 2021, 41(7): 3895-3910. [6] IKESUE A, AUNG Y L. Ceramic laser materials[J]. Nature Photonics, 2008, 2(12): 721-727. [7] 王 静, 葛 烨, 解伟锋, 等. Eu∶Lu2O3透明闪烁陶瓷的制备与性能[J]. 人工晶体学报, 2021, 50(3): 435-440+476. WANG J, GE Y, XIE W F, et al. Preparation and properties of transparent Eu∶Lu2O3 scintillation ceramics[J]. Journal of Synthetic Crystals, 2021, 50(3): 435-440+476 (in Chinese). [8] AUNG Y L, IKESUE A. Importance of optical homogeneity for high-quality transparent ceramics[J]. Journal of the European Ceramic Society, 2022, 42(13): 6097-6103. [9] WANG Y, WANG J, NI M, et al. Exploring the evolution of pores in HIPed Y2O3 transparent ceramics[J]. Ceramics International, 2021, 47(8): 11637-11643. [10] REN C Y, HUANG W W, XIE H B, et al. High power and efficient operation of a Ho∶Y2O3 ceramic laser with over 210 W of output power at 2.1 μm[J]. Optics Express, 2022, 30(17): 31407-31414. [11] ESSER S, RÖHRER C, XU X D, et al. Ceramic Yb∶Lu2O3 thin-disk laser oscillator delivering an average power exceeding 1 kW in continuous-wave operation[J]. Optics Letters, 2021, 46(24): 6063-6066. [12] LI Q, WANG J, MA J, et al. Fabrication of high-efficiency Yb∶Y2O3 laser ceramics without photodarkening[J]. Journal of the American Ceramic Society, 2022, 105(5): 3375-3381. [13] 李 晴, 王 俊, 马 杰, 等. 倍半氧化物激光陶瓷的研究进展[J]. 硅酸盐学报, 2024, 52(3): 1006-1022. LI Q, WANG J, MA J, et al. Research progress on sesquioxide laser ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(3): 1006-1022 (in Chinese). [14] PIRRI A, TOCI G, PATRIZI B, et al. An overview on Yb-doped transparent polycrystalline sesquioxide laser ceramics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1602108. [15] PARADIS C, MODSCHING N, WITTWER V J, et al. Generation of 35-fs pulses from a kerr lens mode-locked Yb∶Lu2O3 thin-disk laser[J]. Optics Express, 2017, 25(13): 14918. [16] SANGHERA J, KIM W, VILLALOBOS G, et al. Ceramic laser materials[J]. Materials, 2011, 5: 258-277. [17] TAKAICHI K, YAGI H, SHIRAKAWA A, et al. Lu2O3∶Yb3+ ceramics-a novel gain material for high-power solid-state lasers[J]. Physica Status Solidi (a), 2005, 202(1): R1-R3. [18] SANGHERA J, FRANTZ J, KIM W, et al. 10% Yb3+-Lu2O3 ceramic laser with 74% efficiency[J]. Optics Letters, 2011, 36(4): 576-578. [19] LIU Z Y, TOCI G, PIRRI A, et al. Fabrication and laser operation of Yb∶Lu2O3 transparent ceramics from co-precipitated nano-powders[J]. Journal of the American Ceramic Society, 2019, 102(12): 7491-7499. [20] LIU Z Y, FENG Y G, TOCI G, et al. Influence of annealing on microstructures and properties of Yb∶Lu2O3 transparent ceramics[J]. Journal of the American Ceramic Society, 2024, 107(3): 1974-1984. [21] CHEN P L, CHEN I W. Grain boundary mobility in Y2O3: defect mechanism and dopant effects[J]. Journal of the American Ceramic Society, 1996, 79(7): 1801-1809. [22] HOU X R, ZHOU S M, LI W J, et al. Study on the effect and mechanism of zirconia on the sinterability of yttria transparent ceramic[J]. Journal of the European Ceramic Society, 2010, 30(15): 3125-3129. [23] WANG J, YIN D L, MA J, et al. Pump laser induced photodarkening in ZrO2-doped Yb∶Y2O3 laser ceramics[J]. Journal of the European Ceramic Society, 2019, 39(2/3): 635-640. [24] YIN D L, WANG J, LIU P, et al. Yttria nanopowders with low degree of aggregation by a spray precipitation method[J]. Ceramics International, 2018, 44(16): 20472-20477. [25] LIU Z Y, TOCI G, PIRRI A, et al. Fabrication, microstructures, and optical properties of Yb∶Lu2O3 laser ceramics from co-precipitated nano-powders[J]. Journal of Advanced Ceramics, 2020, 9(6): 674-682. [26] 李 静. 红外固体激光器用硒化镉晶体吸收系数的测试和计算方法[J]. 中国测试, 2018, 44(增刊1): 29-31. LI J. Method of measuring and calculating of absorption coefficient of cadmium selenide crystal for infrared solid laser[J]. China Measurement & Test, 2018, 44(supplement 1): 29-31 (in Chinese). [27] KAMINSKII A A, AKCHURIN M S, BECKER P, et al. Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants[J]. Laser Physics Letters, 2008, 5(4): 300-303. [28] ZHANG H J, YANG Q H, LU S Z, et al. Structural and spectroscopic characterization of Yb3+ doped Lu2O3 transparent ceramics[J]. Optical Materials, 2012, 34(6): 969-972. [29] BASYROVA L, LOIKO P, MAKSIMOV R, et al. Comparative study of Yb∶Lu3Al5O12 and Yb∶Lu2O3 laser ceramics produced from laser-ablated nanopowders[J]. Ceramics International, 2021, 47(5): 6633-6642. [30] LAVERSENNE L, GUYOT Y, GOUTAUDIER C, et al. Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3[J]. Optical Materials, 2001, 16(4): 475-483. |