[1] CHEN X Y, CHEN R M, CHEN Z Y, et al. Transparent lead lanthanum zirconate titanate (PLZT) ceramic fibers for high-frequency ultrasonic transducer applications[J]. Ceramics International, 2016, 42(16): 18554-18559. [2] GAO X Y, QIAO L, QIU C R, et al. A robust, low-voltage driven millirobot based on transparent ferroelectric crystals[J]. Applied Physics Letters, 2022, 120(3): 032902. [3] THALHAMMER G, MCDOUGALL C, MACDONALD M P, et al. Acoustic force mapping in a hybrid acoustic-optical micromanipulation device supporting high resolution optical imaging[J]. Lab on a Chip, 2016, 16(8): 1523-1532. [4] WANG L V. Multiscale photoacoustic microscopy and computed tomography[J]. Nature Photonics, 2009, 3(9): 503-509. [5] LIU X, TAN P, MA X, et al. Ferroelectric crystals with giant electro-optic property enabling ultracompact Q-switches[J]. Science, 2022, 376(6591): 371-377. [6] QIU C R, WANG B, ZHANG N, et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity[J]. Nature, 2020, 577(7790): 350-354. [7] YAN P K, QIN Y L, XU Z Y, et al. Highly transparent Eu-doped 0.72PMN-0.28PT ceramics with excellent piezoelectricity[J]. ACS Applied Materials & Interfaces, 2021, 13(45): 54210-54216. [8] KWOK K W, LI F L, LIN D M. A novel lead-free transparent ceramic with high electro-optic coefficient[J]. Functional Materials Letters, 2011, 4(3): 237-240. [9] GENG Z M, LI K, SHI D L, et al. Effect of Sr and Ba-doping in optical and electrical properties of KNN based transparent ceramics[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(9): 6769-6775. [10] YANG D, MA C, YANG Z P, et al. Optical and electrical properties of pressureless sintered transparent (K0.37Na0.63)NbO3-based ceramics[J]. Ceramics International, 2016, 42(4): 4648-4657. [11] ZHAO X M, CHAI Q Z, CHEN B, et al. Improved transmittance and ferroelectric properties realized in KNN ceramics via SAN modification[J]. Journal of the American Ceramic Society, 2018, 101(11): 5127-5137. [12] ZHAO X M, CHAO X L, WU D, et al. Simultaneous realization of high transparency and piezoelectricity in low symmetry KNN-based ceramics[J]. Journal of the American Ceramic Society, 2019, 102(6): 3498-3509. [13] LV X, ZHU J G, XIAO D Q, et al. Emerging new phase boundary in potassium sodium-niobate based ceramics[J]. Chemical Society Reviews, 2020, 49(3): 671-707. [14] WU J G, XIAO D Q, ZHU J G. Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries[J]. Chemical Reviews, 2015, 115(7): 2559-2595. [15] QIN Y L, ZHANG J L, YAO W Z, et al. Domain structure of potassium-sodium niobate ceramics before and after poling[J]. Journal of the American Ceramic Society, 2015, 98(3): 1027-1033. [16] SHI C Y, MA J, WU J, et al. Coexistence of excellent piezoelectric performance and high Curie temperature in KNN-based lead-free piezoelectric ceramics[J]. Journal of Alloys and Compounds, 2020, 846: 156245. [17] GENG Z M, LI K, LI X, et al. Fabrication and photoluminescence of Eu-doped KNN-based transparent ceramics[J]. Journal of Materials Science, 2017, 52(4): 2285-2295. [18] CHENG Y T, FAN W C, CHEN H, et al. Hardening effect in lead-free KNN-based piezoelectric ceramics with CuO doping[J]. ACS Applied Materials & Interfaces, 2022, 14(50): 55803-55811. [19] LV X, WU J G. Effects of a phase engineering strategy on the strain properties in KNN-based ceramics[J]. Journal of Materials Chemistry C, 2019, 7(7): 2037-2048. [20] YU F Y, CHI Y, WANG P, et al. Highly responsive photochromic behavior with large coloration contrast in Ba/Sm Co-doped (K0.5Na0.5)NbO3 transparent ceramics[J]. Ceramics International, 2022, 48(13): 18899-18908. [21] YU F Y, WANG P, LIN J F, et al. (K0.5Na0.5)NbO3-based photochromic transparent ceramics for high-security dynamic anti-counterfeiting and optical storage applications[J]. Journal of Luminescence, 2022, 252: 119345. |