人工晶体学报 ›› 2024, Vol. 53 ›› Issue (12): 2027-2042.
• 综合评述 • 下一篇
刘帅1,2, 宋立辉1,2, 杨德仁1,2, 皮孝东1,2
收稿日期:
2024-05-20
出版日期:
2024-12-15
发布日期:
2024-12-20
通信作者:
宋立辉,博士,研究员。E-mail:songlihui@zju.edu.cn;皮孝东,博士,教授。E-mail:xdpi@zju.edu.cn
作者简介:
刘帅(1990—),女,安徽省人,博士。E-mail:0622478@zju.edu.cn
基金资助:
LIU Shuai1,2, SONG Lihui1,2, YANG Deren1,2, PI Xiaodong1,2
Received:
2024-05-20
Online:
2024-12-15
Published:
2024-12-20
摘要: 金属氧化物半导体场效应晶体管(MOSFET)作为碳化硅绝缘栅结构的典型器件被广泛使用,然而SiO2介电常数低的缺点和SiO2/4H-SiC界面特性差的问题一直制约着4H-SiC绝缘栅结构(金属-绝缘体-半导体, MIS)器件更大规模商业化应用,因此科研工作者一直致力于寻找能够替代或弥补SiO2的high-k栅介质材料。本文对该科学问题的研究现状进行综述,首先指出合适的high-k栅介质材料应该拥有较宽的禁带宽度、较高的介电常数、良好的界面特性和热稳定性。然后,主要从栅薄膜制备工艺、沉积温度、栅介质界面特性和电学性能等方面对典型high-k栅介质材料的研究结果进行评价,包括氧化铪(HfO2)、氧化铝(Al2O3)、氮化铝(AlN)、氧化钇(Y2O3)、氧化铈(CeO2)、氧化锆(ZrO2)、氧化镧(La2O3)、五氧化二钽(Ta2O5)、钛酸钡(BaTiO3)、氧化钬(Ho2O3)和由它们组合而成的堆栈栅介质。最后,对未来该领域的研究方向进行了展望和建议,例如对栅漏电流机理的研究、对新材料的更多尝试、器件在极端环境下的可靠性问题等。
中图分类号:
刘帅, 宋立辉, 杨德仁, 皮孝东. 4H-SiC基功率器件的high-k栅介质材料研究进展[J]. 人工晶体学报, 2024, 53(12): 2027-2042.
LIU Shuai, SONG Lihui, YANG Deren, PI Xiaodong. Research Progress on High-k Gate Dielectrics Materials for 4H-SiC Based Power Devices[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(12): 2027-2042.
[1] ÖSTLING M, GHANDI R, ZETTERLING C M. SiC power devices—present status, applications and future perspective[C]//2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs. San Diego, CA, USA. IEEE, 2011: 10-15. [2] CABELLO M, SOLER V, RIUS G, et al. Advanced processing for mobility improvement in 4H-SiC MOSFETs: a review[J]. Materials Science in Semiconductor Processing, 2018, 78: 22-31. [3] ROZEN J, AHYI A C, ZHU X G, et al. Scaling between channel mobility and interface state density in SiC MOSFETs[J]. IEEE Transactions on Electron Devices, 2011, 58(11): 3808-3811. [4] AICHINGER T, SCHMIDT M. Gate-oxide reliability and failure-rate reduction of industrial SiC MOSFETs[C]//2020 IEEE International Reliability Physics Symposium (IRPS). Dallas, TX, USA. IEEE, 2020: 1-6. [5] UMEDA T, ESAKI K, KOSUGI R, et al. Behavior of nitrogen atoms in SiC-SiO2 interfaces studied by electrically detected magnetic resonance[J]. Applied Physics Letters, 2011, 99(14): 142105. [6] LIU G, TUTTLE B R, DHAR S. Silicon carbide: a unique platform for metal-oxide-semiconductor physics[J]. Applied Physics Reviews, 2015, 2(2): 021307. [7] YU L C, DUNNE G T, MATOCHA K S, et al. Reliability issues of SiC MOSFETs: a technology for high-temperature environments[J]. IEEE Transactions on Device and Materials Reliability, 2010, 10(4): 418-426. [8] HEDAYATI R, ZETTERLING C M. Material aspects of wide temperature range amplifier design in SiC bipolar technologies[J]. Journal of Materials Research, 2016, 31(19): 2928-2935. [9] YANO H, HIRAO T, KIMOTO T, et al. Interface properties in metal-oxide-semiconductor structures on n-type 4H-SiC(0338)[J]. Applied Physics Letters, 2002, 81(25): 4772-4774. [10] AMINI MOGHADAM H, DIMITRIJEV S, HAN J S, et al. Active defects in MOS devices on 4H-SiC: a critical review[J]. Microelectronics Reliability, 2016, 60: 1-9. [11] CHUNG G Y, TIN C C, WILLIAMS J R, et al. Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide[J]. IEEE Electron Device Letters, 2001, 22(4): 176-178. [12] CHUNG G Y, TIN C C, WILLIAMS J R, et al. Effect of nitric oxide annealing on the interface trap densities near the band edges in the 4H polytype of silicon carbide[J]. Applied Physics Letters, 2000, 76(13): 1713-1715. [13] OKAMOTO D, YANO H, HIRATA K, et al. Improved inversion channel mobility in 4H-SiC MOSFETs on Si face utilizing phosphorus-doped gate oxide[J]. IEEE Electron Device Letters, 2010, 31(7): 710-712. [14] OKAMOTO D, SOMETANI M, HARADA S, et al. Improved channel mobility in 4H-SiC MOSFETs by boron passivation[J]. IEEE Electron Device Letters, 2014, 35(12): 1176-1178. [15] LICHTENWALNER D J, CHENG L, ALLEN S, et al. Comparison of channel mobility and oxide properties of MOSFET devices on Si-face (0001) and A-face (11-20) 4H-SiC[J]. MRS Online Proceedings Library, 2014, 1693(1): 25-30. [16] LIPKIN L A, PALMOUR J W. Insulator investigation on SiC for improved reliability[J]. IEEE Transactions on Electron Devices, 1999, 46(3): 525-532. [17] FIORENZA P, VIVONA M, DI FRANCO S, et al. Properties of Al2O3 thin films deposited on 4H-SiC by reactive ion sputtering[J]. Materials Science in Semiconductor Processing, 2019, 93: 290-294. [18] WRIGHT N G, POOLAMAI N, VASSILEVSKI K, et al. Benefits of high-k dielectrics in 4H-SiC trench MOSFETs[J]. Materials Science Forum, 2004, 457/458/459/460: 1433-1436. [19] LANNI L, MALM B G, ÖSTLING M, et al. SiC etching and sacrificial oxidation effects on the performance of 4H-SiC BJTs[J]. Materials Science Forum, 2014, 778/779/780: 1005-1008. [20] MOGNIOTTE J F, RAYNAUD C, LAZAR M, et al. SiC lateral Schottky diode technology for integrated smart power converter[C]//2018 IEEE International Conference on Industrial Technology (ICIT). Lyon, France. IEEE, 2018: 841-846. [21] 张 昱. 钇掺杂氧化铪薄膜结构和介电及铁电性能研究[D]. 大连: 大连理工大学, 2018. ZHANG Y. Study on structure, dielectric and ferroelectric properties of yttrium doped hafnium oxide thin films[D].Dalian: Dalian University of Technology, 2018 (in Chinese). [22] ROBERTSON J. High dielectric constant oxides[J]. The European Physical Journal Applied Physics, 2004, 28(3): 265-291. [23] 杨雪娜, 王 弘, 张 寅, 等. High-k材料研究进展与存在的问题[J]. 人工晶体学报, 2004, 33(5): 731-735. YANG X N, WANG H, ZHANG Y, et al. The progress and problems of high-k materials[J]. Journal of Synthetic Crystals, 2004, 33(5): 731-735 (in Chinese). [24] SIDDIQUI A, KHOSA R Y, USMAN M. High-k dielectrics for 4H-silicon carbide: present status and future perspectives[J]. Journal of Materials Chemistry C, 2021, 9(15): 5055-5081. [25] DUENAS S, CASTAN H, GARCIA H, et al. Effect of interlayer trapping and detrapping on the determination of interface state densities on high-k dielectric stacks[C]//2009 Spanish Conference on Electron Devices. Santiago de Compostela, Spain. IEEE, 2009: 1-4. [26] KIMOTO T, COOPER J A. Fundamentals of Silicon Carbide Technology[M]. Hoboken: John Wiley & Sons, 2014. [27] USMAN M, HALLÉN A, PILVI T, et al. Toward the understanding of stacked Al-based high-k dielectrics for passivation of 4H-SiC devices[J]. Journal of the Electrochemical Society, 2011, 158(1): H75. [28] ZHANG F, SUN G S, ZHENG L, et al. Interfacial study and energy-band alignment of annealed Al2O3 films prepared by atomic layer deposition on 4H-SiC[J]. Journal of Applied Physics, 2013, 113(4): 044112. [29] ZHAO F, AMNUAYPHOL O, CHEONG K Y, et al. Post deposition annealing effect on properties of Y2O3/Al2O3 stacking gate dielectric on 4H-SiC[J]. Materials Letters, 2019, 245: 174-177. [30] CHOI J, PUTHENKOVILAKAM R, CHANG J P. Band structure and alignment of the AlN/SiC heterostructure[J]. Applied Physics Letters, 2005, 86(19): 192101. [31] TANNER C M, CHOI J, CHANG J P. Electronic structure and band alignment at the HfO2/4H-SiC interface[J]. Journal of Applied Physics, 2007, 101(3): 034108. [32] YE G, WANG H, JI R. Band alignment between 4H-SiC and atomic-layer-deposited ZrO2 determined by X-ray photoelectron spectroscopy[J]. Applied Physics Express, 2015, 8(9): 091302. [33] WILK G D, WALLACE R M, ANTHONY J M. High-κ gate dielectrics: current status and materials properties considerations[J]. Journal of Applied Physics, 2001, 89(10): 5243-5275. [34] MOON J H, CHEONG K Y, EOM D I, et al. Electrical properties of atomic-layer-deposited La2O3/thermal-nitrided SiO2 stacking dielectric on 4H-SiC(0001)[J]. Materials Science Forum, 2007, 556/557: 643-646. [35] WALKENHORST A, SCHMITT M, ADRIAN H, et al. CeO2: an alternative insulator material for superconducting field effect devices[J]. Applied Physics Letters, 1994, 64(14): 1871-1873. [36] SKORODUMOVA N V, SIMAK S I, LUNDQVIST B I, et al. Quantum origin of the oxygen storage capability of ceria[J]. Physical Review Letters, 2002, 89(16): 166601. [37] TANNER C M, LU J, BLOM H O, et al. Structural and morphological properties of ultrathin HfO2 dielectrics on 4H-SiC (0001)[J]. Materials Science Forum, 2006, 527/528/529: 1075-1078. [38] BARHATE V N, AGRAWAL K S, PATIL V S, et al. Performance enhancement of Al/La2O3/ZrO2/4H-SiC MOS device with LaON as interfacial passivation layer[J]. Materials Science in Semiconductor Processing, 2020, 117: 105161. [39] ODESANYA K O, AHMAD R, ANDRIYANA A, et al. Effects of O2 and N2 gas concentration on the formation of Ho2O3 gate oxide on 4H-SiC substrate[J]. Silicon, 2023, 15(2): 755-761. [40] HAN K, WANG X L, YUAN L, et al. Investigation of spatial charge distribution and electrical dipole in atomic layer deposited Al2O3 on 4H-SiC[J]. Journal of Physics D: Applied Physics, 2016, 49(21): 215106. [41] WANG Q, CHENG X H, ZHENG L, et al. Influence of LaSiOx passivation interlayer on band alignment between PEALD-Al2O3 and 4H-SiC determined by X-ray photoelectron spectroscopy[J]. Applied Surface Science, 2018, 428: 1-6. [42] SUVANAM S S, USMAN M, MARTIN D, et al. Improved interface and electrical properties of atomic layer deposited Al2O3/4H-SiC[J]. Applied Surface Science, 2018, 433: 108-115. [43] HUANG H, WANG Y, CHEN K H, et al. Leakage current behavior in HfO2/SiO2/Al2O3 stacked dielectric on 4H-SiC substrate[J]. IEEE Journal of the Electron Devices Society, 2023, 11: 438-443. [44] SCHILIRÒ E, LO NIGRO R, PANASCI S E, et al. Aluminum oxide nucleation in the early stages of atomic layer deposition on epitaxial graphene[J]. Carbon, 2020, 169: 172-181. [45] PÉREZ-TOMÁS A, GODIGNON P, MESTRES N, et al. 4H-SiC MIS structures using oxidized Ta2Si as high-k dielectric[J]. MRS Online Proceedings Library, 2004, 815(1): 88-93. [46] WANG X R, ZENG Y X, ZHANG J, et al. Electronic properties of ZrO2 films fabricated via atomic layer deposition on 4H-SiC and Si substrates[J]. Materials Research Express, 2024, 11(1): 015902. [47] GALIZIA B, FIORENZA P, BONGIORNO C, et al. Structural and electrical correlation in aluminum nitride thin films grown by plasma enhanced atomic layer deposition as interface insulating layers on silicon carbide (4H-SiC)[J]. Microelectronic Engineering, 2024, 283: 112103. [48] LO NIGRO R, TORO R G, MALANDRINO G, et al. Praseodymium based high-k dielectrics grown on Si and SiC substrates[J]. Materials Science in Semiconductor Processing, 2006, 9(6): 1073-1078. [49] WAZZAN A R. MOS (metal oxide semiconductor) physics and technology[J]. Nuclear Technology, 1986, 74(2): 235-237. [50] WANG Y C, JIA R X, LI C Z, et al. Electric properties of La2O3/SiO2/4H-SiC MOS capacitors with different annealing temperatures[J]. AIP Advances, 2015, 5(8): 087166. [51] SURI R, KIRKPATRICK C J, LICHTENWALNER D J, et al. Energy-band alignment of Al2O3 and HfAlO gate dielectrics deposited by atomic layer deposition on 4H-SiC[J]. Applied Physics Letters, 2010, 96(4): 042903. [52] CASTAGNÉ R, VAPAILLE A. Description of the SiO2-Si interface properties by means of very low frequency MOS capacitance measurements[J]. Surface Science, 1971, 28(1): 157-193. [53] SCHRODER D K. Semiconductor material and device characterization[M]. Canada: John Wiley & Sons, 2005. [54] YOSHIOKA H, NAKAMURA T, KIMOTO T. Accurate evaluation of interface state density in SiC metal-oxide-semiconductor structures using surface potential based on depletion capacitance[J]. Journal of Applied Physics, 2012, 111(1): 014502. [55] CHEONG K Y, MOON J H, PARK T J, et al. Improved electronic performance of HfO2/SiO2 stacking gate dielectric on 4H SiC[J]. IEEE Transactions on Electron Devices, 2007, 54(12): 3409-3413. [56] MODIC A, LIU G, AHYI A C, et al. High channel mobility 4H-SiC MOSFETs by antimony counter-doping[J]. IEEE Electron Device Letters, 2014, 35(9): 894-896. [57] AHYI A C, MODIC A, JIAO C, et al. Channel mobility improvement in 4H-SiC MOSFETs using a combination of surface counter-doping and NO annealing[J]. Materials Science Forum, 2015, 821/822/823: 693-696. [58] ZHANG L, JIANG H C, LIU C, et al. Annealing of Al2O3 thin films prepared by atomic layer deposition[J]. Journal of Physics D: Applied Physics, 2007, 40(12): 3707-3713. [59] CHEONG K Y, MOON J H, KIM H J, et al. Current conduction mechanisms in atomic-layer-deposited HfO2/nitrided SiO2 stacked gate on 4H silicon carbide[J]. Journal of Applied Physics, 2008, 103(8): 084113. [60] TANNER C M, CHOI J W, CHANG J P. Experimental and first-principles studies of the band alignment at the HfO2/4H-SiC (0001) interface[J]. Materials Science Forum, 2006, 527/528/529: 1071-1074. [61] COSTANTINI J M, RIBIS J. Analysis of plasmon loss peaks of oxides and semiconductors with the energy loss function[J]. Materials, 2023, 16(24): 7610. [62] SIDDIQUI A, ELGABRA H, SINGH S. The current status and the future prospects of surface passivation in 4H-SiC transistors[J]. IEEE Transactions on Device and Materials Reliability, 2016, 16(3): 419-428. [63] TAUBE A, GIERAŁTOWSKA S, GUTT T, et al. Electronic properties of thin HfO2 films fabricated by atomic layer deposition on 4H-SiC[J]. Acta Physica Polonica A, 2011, 119(5): 696-698. [64] HSU C M, HWU J G. Investigation of carbon interstitials with varied SiO2 thickness in HfO2/SiO2/4H-SiC structure[J]. Applied Physics Letters, 2012, 101(25): 253517. [65] LINNARSSON M K, HALLÉN A, KHARTSEV S, et al. Interface between Al2O3 and 4H-SiC investigated by time-of-flight medium energy ion scattering[J]. Journal of Physics D: Applied Physics, 2017, 50(49): 495111. [66] USMAN M, HALLEN A. Radiation-hard dielectrics for 4H-SiC: a comparison between SiO2 and Al2O3[J]. IEEE Electron Device Letters, 2011, 32(12): 1653-1655. [67] HALLÉN A, USMAN M, SUVANAM S, et al. Passivation of SiC device surfaces by aluminum oxide[C]. Symposium G on Alternative Approaches of SiC and Related Wide Bandgap Materials in Light Emitting and Solar Cell Applications held at the E-MRS Spring Meeting Strasbourg, FRANCE, 2013. [68] 付盈盈. 高介电薄膜材料的原子层沉积技术制备、表征及其在微电子领域的应用研究[D]. 南京: 南京大学, 2012. FU Y Y. Preparation and characterization of high dielectric thin film materials by atomic layer deposition and its application in microelectronics[D].Nanjing: Nanjing University, 2012 (in Chinese). [69] LO NIGRO R, SCHILIR O E, FIORENZA P, et al. Nanolaminated Al2O3/HfO2 dielectrics for silicon carbide based devices[J]. Journal of Vacuum Science Technology A: Vacuum Surfaces and Films, 2020, 38(3): 032410. [70] RAMASUBRAMANIAN K, NIKHIL C, RAO S, et al. Tribological behavior of diamond coated reaction-bonded silicon carbide under dry and seawater environment[J]. Surface and Coatings Technology, 2024, 476: 130204. [71] XIA Z K, GAO J J, ZHANG T F, et al. Thermodynamic analysis of the key reactions in synthesizing inorganic silicon compounds or products[J]. Industrial & Engineering Chemistry Research, 2023, 62(33): 13213-13222. [72] KUMTA A S, RUSLI, XIA J H. Field-plate-terminated 4H-SiC Schottky diodes using Al-based high-k dielectrics[J]. IEEE Transactions on Electron Devices, 2009, 56(12): 2925-2934. [73] USMAN M, NOUR M, AZAROV A Y, et al. Annealing of ion implanted 4H-SiC in the temperature range of 100-800 ℃ analysed by ion beam techniques[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(11/12): 2083-2085. [74] USMAN M, ARSHAD M, SUVANAM S S, et al. Influence of annealing environment on the ALD-Al2O3/4H-SiC interface studied through XPS[J]. Journal of Physics D: Applied Physics, 2018, 51(10): 105111. [75] USMAN M, SUVANAM S S, LINNARSSON M K, et al. Improving the quality of Al2O3/4H-SiC interface for device applications[J]. Materials Science in Semiconductor Processing, 2018, 81: 118-121. [76] AVICE M, GROSSNER U, PINTILIE I, et al. Electrical properties of Al2O3/4H-SiC structures grown by atomic layer chemical vapor deposition[J]. Journal of Applied Physics, 2007, 102(5): 054513. [77] YOSHIOKA H, YAMAZAKI M, HARADA S. Reduction of interface states by hydrogen treatment at the aluminum oxide/4H-SiC Si-face interface[J]. AIP Advances, 2016, 6(10): 105206. [78] KHOSA R Y, CHEN J T, PÁLSSON K, et al. Electrical properties of 4H-SiC MIS capacitors with AlN gate dielectric grown by MOCVD[J]. Solid-State Electronics, 2019, 153: 52-58. [79] ZHU X G, SHEN Z W, WANG Z J, et al. Effects of gamma-ray irradiation on material and electrical properties of AlN gate dielectric on 4H-SiC[J]. Nanotechnology, 2024, 35(27): 275704. [80] HOSOI T, HARADA M, KAGEI Y, et al. AlON/SiO2 stacked gate dielectrics for 4H-SiC MIS devices[C]. 7th European Conference on Silicon Carbide and Related MaterialsBarcelona, SPAIN, 2008: 541-544. [81] HOSOI T, AZUMO S, KASHIWAGI Y, et al. Performance and reliability improvement in SiC power MOSFETs by implementing AlON high-k gate dielectrics[C]//2012 International Electron Devices Meeting. San Francisco, CA, USA. IEEE, 2012: 7.4.1-7.4.4. [82] KUMTA A, RUSLI, XIA J H. Breakdown phenomena of Al-based high-k dielectric/SiO2 stack on 4H-SiC[J]. Applied Physics Letters, 2009, 94(23): 233505. [83] KUMTA A, RUSLI E, XIA J H. Field-plate terminated Pt/n- 4H-SiC SBD using thermal SiO2 and sputter deposited AlN dielectric stack[J]. Materials Science Forum, 2008, 600/601/602/603: 987-990. [84] QUAH H J, CHEONG K Y, HASSAN Z, et al. MOS characteristics of metallorganic-decomposed CeO2 spin-coated on GaN[J]. Electrochemical and Solid-State Letters, 2010, 13(4): H116. [85] LIM W F, CHEONG K Y, LOCKMAN Z. Physical characterization of post-deposition annealed metal-organic decomposed cerium oxide film spin-coated on 4H-silicon carbide[J]. Journal of Alloys and Compounds, 2010, 497(1/2): 195-200. [86] KRÓL K, SOCHACKI M, TAUBE A, et al. Influence of atomic layer deposition temperature on the electrical properties of Al/ZrO2/SiO2/4H-SiC metal-oxide semiconductor structures[J]. Physica Status Solidi (a), 2018, 215(13): 1700882. [87] KURNIAWAN T, WONG Y H, YEW CHEONG K, et al. Effects of post-oxidation annealing temperature on ZrO2 thin film deposited on 4H-SiC substrate[J]. Materials Science in Semiconductor Processing, 2011, 14(1): 13-17. [88] MOON J H, EOM D I, NO S Y, et al. Electrical properties of the La2 O3/4H-SiC interface prepared by atomic layer deposition using La(iPrCp)3 and H2O[J]. Materials Science Forum, 2006, 527/528/529: 1083-1086. [89] WANG Y C, JIA R X, ZHAO Y L, et al. Investigation of leakage current mechanisms in La2O3/SiO2/4H-SiC MOS capacitors with varied SiO2 thickness[J]. Journal of Electronic Materials, 2016, 45(11): 5600-5605. [90] ZHAO P, RUSLI, LOK B K, et al. Investigation of Ta2O5/SiO2/4H-SiC MIS capacitors[J]. Microelectronic Engineering, 2006, 83(1): 58-60. [91] PÉREZ-TOMÁS A, JENNINGS M R, GAMMON P M, et al. SiC MOSFETs with thermally oxidized Ta2Si stacked on SiO2 as high-k gate insulator[J]. Microelectronic Engineering, 2008, 85(4): 704-709. [92] CHOI J S, LEE H W, LEE T H, et al. Effects of post-deposition annealing on BaTiO3/4H-SiC MOS capacitors using aerosol deposition method[J]. Applied Physics A, 2024, 130(3): 188. [93] ODESANYA K O, ONIK T A M, AHMAD R, et al. Physical and electrical characteristics of Ho2O3 thin film based on 4H-SiC wide bandgap semiconductor[J]. Thin Solid Films, 2022, 741: 138997. [94] WU W L, WANG X Z, LI J B. Gate-oxide interface performance improvement technology of 4H-SiC MOSFET[J]. Chinese Science Bulletin, 2023, 68(14): 1777-1786. [95] 时定坤. 碳化硅器件的栅介质和肖特基势垒研究[D]. 杭州: 杭州电子科技大学, 2021. SHI D K. Study on gate dielectric and Schottky barrier of silicon carbide devices[D].Hangzhou: Hangzhou Dianzi University, 2021 (in Chinese). [96] CHEONG K Y, MOON J H, EOM D, et al. Electronic properties of atomic-layer-deposited Al2O3/thermal-nitrided SiO2 stacking dielectric on 4H SiC[J]. Electrochemical and Solid-State Letters, 2007, 10(2): H69. [97] KHOSA R Y, THORSTEINSSON E B, WINTERS M, et al. Electrical characterization of amorphous Al2O3 dielectric films on n-type 4H-SiC[J]. AIP Advances, 2018, 8(2): 025304. [98] TANNER C M, PERNG Y C, FREWIN C, et al. Electrical performance of Al2O3 gate dielectric films deposited by atomic layer deposition on 4H-SiC[J]. Applied Physics Letters, 2007, 91(20): 203510. [99] TAUBE A, GUZIEWICZ M, KOSIEL K, et al. Characterization of Al2O3/4H-SiC and Al2O3/SiO2/4H-SiC MOS structures[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2016, 64(3): 547-551. [100] WOLBORSKI M, ROOTH M, BAKOWSKI M, et al. Characterization of HfO2 films deposited on 4H-SiC by atomic layer deposition[J]. Journal of Applied Physics, 2007, 101(12): 124105. [101] USMAN M, HENKEL C, HALLÉN A. HfO2/Al2O3 Bilayered high-k dielectric for passivation and gate insulator in 4H-SiC devices[J]. ECS Journal of Solid State Science and Technology, 2013, 2(8): N3087-N3091. [102] SCHILIRÒ E, FIORENZA P, DI FRANCO S, et al. Effect of SiO2 interlayer on the properties of Al2O3 thin films grown by plasma enhanced atomic layer deposition on 4H-SiC substrates[J]. Physica Status Solidi (a), 2017, 214(4): 1600365. [103] HSU C H, CHO Y S, WU W Y, et al. Enhanced Si passivation and PERC solar cell efficiency by atomic layer deposited aluminum oxide with two-step post annealing[J]. Nanoscale Research Letters, 2019, 14(1): 139. [104] HO M Y, GONG H, WILK G D, et al. Morphology and crystallization kinetics in HfO2 thin films grown by atomic layer deposition[J]. Journal of Applied Physics, 2003, 93(3): 1477-1481. [105] KWON S, KIM D K, CHO M H, et al. Reduction of defect states in atomic-layered HfO2 film on SiC substrate using post-nitridation annealing[J]. Thin Solid Films, 2018, 645: 102-107. [106] AFANAS’EV V V, STESMANS A, CHEN F, et al. HfO2-based insulating stacks on 4H-SiC(0001)[J]. Applied Physics Letters, 2003, 82(6): 922-924. [107] GANESWARA RAO M V, RAMANJANEYULU N, MADUGULA S, et al. Retraction note: exploring high-temperature reliability of 4H-SiC MOSFETs: a comparative study of high-k gate dielectric materials[J]. Transactions on Electrical and Electronic Materials, 2024, 25(2): 194-200. [108] WANG Y Y, SHEN H J, BAI Y, et al. Influences of high-temperature annealing on atomic layer deposited Al2O3/4H-SiC[J]. Chinese Physics B, 2013, 22(7): 078102. [109] PARK P K, CHA E S, KANG S W. Interface effect on dielectric constant of HfO2/Al2O3 nanolaminate films deposited by plasma-enhanced atomic layer deposition[J]. Applied Physics Letters, 2007, 90(23): 232906. [110] NEERAJ N, SHARMA S, GOEL A, et al. Improved analog and AC performance for high frequency linearity based applications using gate-stack dual metal (DM) nanowire (NW) FET (4H-SiC)[J]. Microsystem Technologies, 2023, 29(10): 1403-1416. [111] HUANG L H, LIU Y, PENG X, et al. Static performance and threshold voltage stability improvement of Al2O3/LaAlO3/SiO2 gate-stack for SiC power MOSFETs[J]. IEEE Transactions on Electron Devices, 2022, 69(2): 690-695. [112] HUANG L H, LIU Y, XIAO C, et al. Characterization of Al2O3/LaAlO3/SiO2 gate stack on 4H-SiC after post-deposition annealing[J]. IEEE Transactions on Electron Devices, 2021, 68(4): 2133-2137. |
[1] | 郑权, 刘学超, 王浩, 朱新峰, 潘秀红, 陈锟, 邓伟杰, 汤美波, 徐浩, 吴鸿辉, 金敏. 铝掺杂对硒化铟晶体结构与性能的影响[J]. 人工晶体学报, 2024, 53(9): 1528-1535. |
[2] | 彭倩文, 吉祥. 退火温度对BCZT外延薄膜电学性能的影响及其导电机制分析[J]. 人工晶体学报, 2024, 53(1): 82-89. |
[3] | 刘璇, 郭菲菲, 龙伟, 惠增哲, 何爱国, 徐瑰宇. Gd2O3掺杂BiFeO3陶瓷的漏电流特性及磁性能研究[J]. 人工晶体学报, 2023, 52(6): 1161-1167. |
[4] | 耿方娟, 杨磊, 朱嘉琦. 退火方式及温度对层层碘化法CuI薄膜结构、形貌和光电性能的影响[J]. 人工晶体学报, 2023, 52(5): 842-848. |
[5] | 胡晓君, 郑玉浩, 陈成克, 鲁少华, 蒋梅燕, 李晓. 纳米金刚石薄膜的掺杂、表/界面调控及性能研究[J]. 人工晶体学报, 2022, 51(5): 865-874. |
[6] | 崔景贺, 蒋权伟, 高忙忙, 梁森. 掺锗提高VO2薄膜的相变温度机理研究[J]. 人工晶体学报, 2022, 51(4): 666-672. |
[7] | 龚跃球;陈泓怡. 铌掺杂钛酸铋钠钾厚膜的制备及其铁电性能[J]. 人工晶体学报, 2018, 47(9): 1818-1822. |
[8] | 王晓芳;岳建设. 烧结温度对(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3无铅压电陶瓷结构和电学性能的影响研究[J]. 人工晶体学报, 2018, 47(6): 1242-1247. |
[9] | 樊志琴;何源源;李瑞. 磁控溅射Cu薄膜的光电性能研究[J]. 人工晶体学报, 2017, 46(6): 1072-1077. |
[10] | 何利利;张明;郭治平;刘翔;吴长树. 热壁外延制备InAs/Si(211)薄膜及其电学性能研究[J]. 人工晶体学报, 2017, 46(12): 2313-2318. |
[11] | 郭宇坤;周玉荣;陈瑱怡;马宁;刘丰珍. HWCVD低温制备超薄硼掺杂纳米晶硅薄膜[J]. 人工晶体学报, 2016, 45(8): 2003-2010. |
[12] | 吴冠洁;邓安猛;蔡帅;汪振海;罗来慧;陈红兵. 高相变温度弛豫铁电单晶PMN-PT-PZ的生长与性能表征[J]. 人工晶体学报, 2016, 45(12): 2741-2746. |
[13] | 陈馨;董伟霞;罗婷;范薇;胡超. 玻璃化转变温度对太阳电池Ag/Si界面微观结构和电学性能的影响[J]. 人工晶体学报, 2015, 44(9): 2496-2500. |
[14] | 赵全亮;祁利辉;李中翔;何广平;狄杰建;王大伟. 溶胶-凝胶法制备LaNiO3薄膜及其电学性能研究[J]. 人工晶体学报, 2015, 44(6): 1582-1585. |
[15] | 袁昌来;刘心宇;陈国华;杨云;骆颖;周秀娟. CuO/BaCo0.02ⅡCo0.04ⅢBi0.94O3共掺Ba0.5Bi0.5Fe0.9Sn0.1O3热敏厚膜的微结构及电学性能研究[J]. 人工晶体学报, 2014, 43(5): 1199-1205. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||