[1] LIU B Y, CHEN Q, CHEN Z L, et al. Atomic mechanism of strain alleviation and dislocation reduction in highly mismatched remote heteroepitaxy using a graphene interlayer[J]. Nano Letters, 2022, 22(8): 3364-3371. [2] JIA Y Q, NING J, ZHANG J C, et al. Transferable GaN enabled by selective nucleation of AlN on graphene for high-brightness violet light-emitting diodes[J]. Advanced Optical Materials, 2020, 8(2): 1901632. [3] YIN Y E, LIU B Y, CHEN Q, et al. Continuous single-crystalline GaN film grown on WS2-glass wafer[J]. Small, 2022, 18(41): 2202529. [4] HIROKI M, KUMAKURA K, KOBAYASHI Y, et al. Suppression of self-heating effect in AlGaN/GaN high electron mobility transistors by substrate-transfer technology using h-BN[J]. Applied Physics Letters, 2014, 105(19): 193509. [5] KOBAYASHI Y, KUMAKURA K, AKASAKA T, et al. Layered boron nitride as a release layer for mechanical transfer of GaN-based devices[J]. Nature, 2012, 484(7393): 223-227. [6] GLAVIN N R, CHABAK K D, HELLER E R, et al. Flexible gallium nitride for high-performance, strainable radio-frequency devices[J]. Advanced Materials, 2017, 29(47): 1701838. [7] MOTALA M J, BLANTON E W, HILTON A, et al. Transferrable AlGaN/GaN high-electron mobility transistors to arbitrary substrates via a two-dimensional boron nitride release layer[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 21837-21844. [8] PADUANO Q, SNURE M, SIEGEL G, et al. Growth and characteristics of AlGaN/GaN heterostructures on sp2-bonded BN by metal-organic chemical vapor deposition[J]. Journal of Materials Research, 2016, 31(15): 2204-2213. [9] SHI Y M, LI H N, LI L J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques[J]. Chemical Society Reviews, 2015, 44(9): 2744-2756. [10] PADUANO Q, SNURE M, WEYBURNE D, et al. Metalorganic chemical vapor deposition of few-layer sp2 bonded boron nitride films[J]. Journal of Crystal Growth, 2016, 449: 148-155. [11] LEE S H, JEONG H, OKELLO O F N, et al. Improvements in structural and optical properties of wafer-scale hexagonal boron nitride film by post-growth annealing[J]. Scientific Reports, 2019, 9: 10590. [12] 李传皓, 李忠辉, 彭大青, 等. 少层氮化硼的生长机理及技术研究[J]. 固体电子学研究与进展, 2022, 42(6): 510-514+520. LI C H, LI Z H, PENG D Q, et al. Study on growth mechanism and technology of boron nitride with few layers[J]. Research & Progress of SSE, 2022, 42(6): 510-514+520 (in Chinese). [13] LI C H, LI Z H, PENG D Q, et al. Growth of thin AlN nucleation layer and its impact on GaN-on-SiC heteroepitaxy[J]. Journal of Alloys and Compounds, 2020, 838: 155557. [14] CHUANG R W, YU C L, CHANG S J, et al. Crystal growth and characterization of AlGaN/GaN heterostructures prepared on vicinal-cut sapphire (0001) substrates[J]. Journal of Crystal Growth, 2007, 308(2): 252-257. [15] CHO S I, CHANG K, KWON M S. Strain analysis of a GaN epilayer grown on a c-plane sapphire substrate with different growth times[J]. Journal of Materials Science, 2007, 42(10): 3569-3572. [16] GAMARRA P, LACAM C, TORDJMAN M, et al. Impact of the substrate and of the nucleation layer on the properties of AlGaN/GaN HEMTs on SiC[J]. Journal of Crystal Growth, 2013, 370: 282-287. [17] SNURE M, SIEGEL G, LOOK D C, et al. GaN and AlGaN/GaN heterostructures grown on two dimensional BN templates[J]. Journal of Crystal Growth, 2017, 464: 168-174. [18] WANG X L, WANG C M, HU G X, et al. MOCVD-grown high-mobility Al0.3Ga0.7N/AlN/GaN HEMT structure on sapphire substrate[J]. Journal of Crystal Growth, 2007, 298: 791-793. [19] UREN M J, MOREKE J, KUBALL M. Buffer design to minimize current collapse in GaN/AlGaN HFETs[J]. IEEE Transactions on Electron Devices, 2012, 59(12): 3327-3333. |