[1] SONG J J, WEI C, HUANG Z F, et al. A review on fundamentals for designing oxygen evolution electrocatalysts[J]. Chemical Society Reviews, 2020, 49(7): 2196-2214. [2] LU X Y, ZHAO C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities[J]. Nature Communications, 2015, 6: 6616. [3] YU S, WU Y, XUE Q, et al. A novel multi-walled carbon nanotube-coupled CoNi MOF composite enhances the oxygen evolution reaction through synergistic effects[J]. Journal of Materials Chemistry A, 2022, 10(9): 4936-4943. [4] SHI Q R, ZHU C Z, DU D, et al. Robust noble metal-based electrocatalysts for oxygen evolution reaction[J]. Chemical Society Reviews, 2019, 48(12): 3181-3192. [5] SONG Z, MA Y L, LI C E. The residual tetracycline in pharmaceutical wastewater was effectively removed by using MnO2/graphene nanocomposite[J]. Science of the Total Environment, 2019, 651: 580-590. [6] GUO W, YU C, LI S F, et al. Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: challenges and perspectives[J]. Nano Energy, 2019, 57: 459-472. [7] MENG Y T, SONG W Q, HUANG H, et al. Structure-property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media[J]. Journal of the American Chemical Society, 2014, 136(32): 11452-11464. [8] KITCHAEV D A, DACEK S T, SUN W H, et al. Thermodynamics of phase selection in MnO2 framework structures through alkali intercalation and hydration[J]. Journal of the American Chemical Society, 2017, 139(7): 2672-2681. [9] LIU M J, WANG Q, LIU Z Y, et al. In-situ N-doped MnCO3 anode material via one-step solvothermal synthesis: doping mechanisms and enhanced electrochemical performances[J]. Chemical Engineering Journal, 2020, 383: 123161. [10] LIN L S, SONG J B, SONG L A, et al. Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy[J]. Angewandte Chemie International Edition, 2018, 57(18): 4902-4906. [11] IYER A, DEL-PILAR J, KING'ONDU C K, et al. Water oxidation catalysis using amorphous manganese oxides, octahedral molecular sieves (OMS-2), and octahedral layered (OL-1) manganese oxide structures[J]. The Journal of Physical Chemistry C, 2012, 116(10): 6474-6483. [12] XU G Y, YUE M F, QIAN Z X, et al. Metal-support interactions alter the active species on IrOx for electrocatalytic water oxidation[J]. Journal of Materials Chemistry A, 2023, 11(28): 15204-15210. [13] ABE H, MURAKAMI A, TSUNEKAWA S, et al. Selective catalyst for oxygen evolution in neutral brine electrolysis: an oxygen-deficient manganese oxide film[J]. ACS Catalysis, 2021, 11(11): 6390-6397. [14] TANG Y J, ZHENG S S, CAO S A, et al. Advances in the application of manganese dioxide and its composites as electrocatalysts for the oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2020, 8(36): 18492-18514. [15] TIAN L, WANG J J, WANG K, et al. Carbon-quantum-dots-embedded MnO2 nanoflower as an efficient electrocatalyst for oxygen evolution in alkaline media[J]. Carbon, 2019, 143: 457-466. [16] XIONG Y, XU L L, JIN C D, et al. Interface-engineered atomically thin Ni3S2/MnO2 heterogeneous nanoarrays for efficient overall water splitting in alkaline media[J]. Applied Catalysis B: Environmental, 2019, 254: 329-338. [17] ZENG X C, ZHANG X J, LIU S, et al. A highly efficient cathode catalyst γ-MnO2@CNT composite for sodium-air batteries[J]. Science China Chemistry, 2019, 62(6): 727-731. [18] XU T Z, ZHANG P Y, ZHANG H Y. Ultrathin δ-MnO2 nanoribbons for highly efficient removal of a human-related low threshold odorant - acetic acid[J]. Applied Catalysis B: Environmental, 2022, 309: 121273. [19] QIN Y Z, LIU Y, ZHANG Y Z, et al. Ru-substituted MnO2 for accelerated water oxidation: the feedback of strain-induced and polymorph-dependent structural changes to the catalytic activity and mechanism[J]. ACS Catalysis, 2023, 13(1): 256-266. [20] ZHANG Y, GUO H R, SONG M, et al. Modulation of the morphology and electronic structure of Ni3S2 nano-forests via P and Mo co-doping in polyoxometalates to promote the urea oxidation reaction[J]. Journal of Materials Chemistry A, 2023, 11(7): 3584-3593. [21] GU Y D, MIN Y X, LI L, et al. Crystal splintering of β-MnO2 induced by interstitial Ru doping toward reversible oxygen conversion[J]. Chemistry of Materials, 2021, 33(11): 4135-4145. [22] ATTANAYAKE N H, THENUWARA A C, PATRA A, et al. Effect of intercalated metals on the electrocatalytic activity of 1T-MoS2 for the hydrogen evolution reaction[J]. ACS Energy Letters, 2018, 3(1): 7-13. [23] HU Y, HUANG Z Y, ZHANG Q, et al. Interfacial engineering of Co5.47N/Mo5N6 nanosheets with rich active sites synergistically accelerates water dissociation kinetics for Pt-like hydrogen evolution[J]. Journal of Colloid and Interface Science, 2023, 643: 455-464. [24] YAN G B, LIAN Y B, GU Y D, et al. Phase and morphology transformation of MnO2 induced by ionic liquids toward efficient water oxidation[J]. ACS Catalysis, 2018, 8(11): 10137-10147. [25] MENEZES P W, WALTER C, CHAKRABORTY B, et al. Combination of highly efficient electrocatalytic water oxidation with selective oxygenation of organic substrates using manganese borophosphates[J]. Advanced Materials, 2021, 33(9): e2004098. [26] 夏 熙. 二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(4)[J]. 电池, 2005, 35(3): 199-203. XIA X. Crystal structure, preparation and discharge performancefor manganese dioxides and related manganese oxides(Ⅳ)[J]. Battery Bimonthly, 2005, 35(3): 199-203 (in Chinese). [27] 刁金香, 邱 雨, 郭晓辉. 介孔Co3S4纳米棒的制备及电催化产氧性能的研究[J]. 人工晶体学报, 2018, 47(2): 370-373+381. DIAO J X, QIU Y, GUO X H. Synthesis of mesoporous Co3S4 nanorods and their application as electrocatalysts for efficient oxygen evolution[J]. Journal of Synthetic Crystals, 2018, 47(2): 370-373+381 (in Chinese). [28] ZHANG B, ZHENG X L, VOZNYY O, et al. Homogeneously dispersed multimetal oxygen-evolving catalysts[J]. Science, 2016, 352(6283): 333-337. [29] WANG Y, ZHAO Y Z, LIU L A, et al. Mesoporous single crystals with Fe-rich skin for ultralow overpotential in oxygen evolution catalysis[J]. Advanced Materials, 2022, 34(20): 1-11. [30] QIN Y, YU T T, DENG S H, et al. RuO2 electronic structure and lattice strain dual engineering for enhanced acidic oxygen evolution reaction performance[J]. Nature Communications, 2022, 13: 3784. [31] ZOU X X, ZHANG Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chemical Society Reviews, 2015, 44(15): 5148-5180. |