人工晶体学报 ›› 2024, Vol. 53 ›› Issue (4): 554-571.
秦峰1,2, 吴金杰2, 邓宁勤2, 焦志伟1, 朱伟峰2,3, 汤显强2,3, 赵瑞2
收稿日期:
2023-10-26
出版日期:
2024-04-15
发布日期:
2024-04-19
通信作者:
赵 瑞,助理研究员。E-mail:zhaorui@nim.ac.cn
作者简介:
秦 峰(1999—),男,山东省人,硕士研究生。E-mail:1054457603@qq.com
基金资助:
QIN Feng1,2, WU Jinjie2, DENG Ningqin2, JIAO Zhiwei1, ZHU Weifeng2,3, TANG Xianqiang2,3, ZHAO Rui2
Received:
2023-10-26
Online:
2024-04-15
Published:
2024-04-19
摘要: X射线和γ射线探测在医学成像、安防检查、国土安全、无损检测等各个领域得到广泛应用,钙钛矿材料具有高辐射吸收系数、高载流子迁移率-寿命乘积、特殊的缺陷容忍特性而成为辐射探测器件优异的候选材料。溶液法在制备钙钛矿材料方面具有显著的优势,溶液法的成本较低,能在低温或环境条件下制备,更易推行工业化生产,是未来优化材料体系,制备高质量、大尺寸晶体材料的关键技术。本文从溶液法制备卤化铅钙钛矿材料的角度出发,分析晶体生长及材料组成对辐射探测性能的影响,重点介绍从优化晶体生长质量和器件结构设计等方面提升辐射探测性能,最后总结钙钛矿材料在辐射探测领域面临的挑战,并展望了未来研究的发展方向,期望为钙钛矿材料在辐射探测领域走向工业化提供参考。
中图分类号:
秦峰, 吴金杰, 邓宁勤, 焦志伟, 朱伟峰, 汤显强, 赵瑞. 基于溶液法制备卤化铅钙钛矿的直接型辐射探测器研究进展[J]. 人工晶体学报, 2024, 53(4): 554-571.
QIN Feng, WU Jinjie, DENG Ningqin, JIAO Zhiwei, ZHU Weifeng, TANG Xianqiang, ZHAO Rui. Research Progress for Lead Halide Perovskite Direct Radiation Detector Based on the Solution Method[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 554-571.
[1] CHAPMAN D, THOMLINSON W, JOHNSTON R E, et al. Diffraction enhanced X-ray imaging[J]. Physics in Medicine and Biology, 1997, 42(11): 2015-2025. [2] GILL H S, ELSHAHAT B, KOKIL A, et al. Flexible perovskite based X-ray detectors for dose monitoring in medical imaging applications[J]. Physics in Medicine, 2018, 5: 20-23. [3] FEIGIN L A, SVERGUN D I. Structure analysis by small-angle X-ray and neutron scattering[M]. Boston, MA: Springer US, 1987. [4] SPAHN M. X-ray detectors in medical imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 731: 57-63. [5] SZELES C. CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications[J]. Physica Status Solidi (b), 2004, 241(3): 783-790. [6] SORDO S D, ABBENE L, CAROLI E, et al. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications[J]. Sensors, 2009, 9(5): 3491-3526. [7] HE Z, LI W, KNOLL G F, et al. Measurement of material uniformity using 3-D position sensitive CdZnTe gamma-ray spectrometers[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 441(3): 459-467. [8] BYUN J I, HWANG H Y, YUN J Y. A low background gamma-ray spectrometer with a large well HPGe detector[J]. Applied Radiation and Isotopes, 2020, 156: 108932. [9] LUKE P N, AMMAN M, TINDALL C, et al. Recent developments in semiconductor gamma-ray detectors[J]. Journal of Radioanalytical and Nuclear Chemistry, 2005, 264(1): 145-153. [10] KASAP S O. X-ray sensitivity of photoconductors: application to stabilized a-Se[J]. Journal of Physics D: Applied Physics, 2000, 33(21): 2853-2865. [11] SIDDIQUEE S, KABIR M Z. Modeling of photocurrent and lag signals in amorphous selenium X-ray detectors[J]. Journal of Vacuum Science Technology A: Vacuum Surfaces and Films, 2015, 33(4): 041514. [12] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643-647. [13] KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 2: 591. [14] HEO J H, IM S H, NOH J H, et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors[J]. Nature Photonics, 2013, 7: 486-491. [15] LIU M Z, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501: 395-398. [16] WANG Q, DONG Q F, LI T, et al. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells[J]. Advanced Materials, 2016, 28(31): 6734-6739. [17] TAN Z K, MOGHADDAM R S, LAI M L, et al. Bright light-emitting diodes based on organometal halide perovskite[J]. Nature Nanotechnology, 2014, 9: 687-692. [18] CHO H, JEONG S H, PARK M H, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes[J]. Science, 2015, 350(6265): 1222-1225. [19] YANG F, ZENG Q S, DONG W, et al. Rational adjustment to interfacial interaction with carbonized polymer dots enabling efficient large-area perovskite light-emitting diodes[J]. Light: Science & Applications, 2023, 12: 119. [20] FANG Y J, DONG Q F, SHAO Y C, et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination[J]. Nature Photonics, 2015, 9: 679-686. [21] CHEN C H, LI Z Y, FU L. Perovskite photodetector-based single pixel color camera for artificial vision[J]. Light: Science & Applications, 2023, 12: 77. [22] XUE J, ZHU Z F, XU X B, et al. Narrowband perovskite photodetector-based image array for potential application in artificial vision[J]. Nano Letters, 2018, 18(12): 7628-7634. [23] STOUMPOS C C, KANATZIDIS M G. Halide perovskites: poor man's high-performance semiconductors[J]. Advanced Materials, 2016, 28(28): 5778-5793. [24] WU Y, FENG J S, YANG Z, et al. Halide perovskite: a promising candidate for next-generation X-ray detectors[J]. Advanced Science, 2022, 10(1): e2205536. [25] ZHOU Y, CHEN J, BAKR O M, et al. Metal halide perovskites for X-ray imaging scintillators and detectors[J]. ACS Energy Letters, 2021, 6(2): 739-768. [26] NAZARENKO O, YAKUNIN S, MORAD V, et al. Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry[J]. NPG Asia Materials, 2017, 9(4): e373. [27] DONG Q F, FANG Y J, SHAO Y C, et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 2015, 347(6225): 967-970. [28] LIAN Z P, YAN Q F, GAO T T, et al. Perovskite CH3NH3PbI3(Cl) single crystals: rapid solution growth, unparalleled crystalline quality, and low trap density toward 108 cm-3[J]. Journal of the American Chemical Society, 2016, 138(30): 9409-9412. [29] YIN W J, SHI T T, YAN Y F. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber[J]. Applied Physics Letters, 2014, 104(6): 063903. [30] LUKOSI E, SMITH T, TISDALE J, et al. Methylammonium lead tribromide semiconductors: ionizing radiation detection and electronic properties[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 927: 401-406. [31] YAKUNIN S, SYTNYK M, KRIEGNER D, et al. Detection of X-ray photons by solution-processed lead halide perovskites[J]. Nature Photonics, 2015, 9: 444-449. [32] SAIDAMINOV M I, ABDELHADY A L, MURALI B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization[J]. Nature Communications, 2015, 6: 7586. [33] LIU Y, ZHENG X P, FANG Y J, et al. Ligand assisted growth of perovskite single crystals with low defect density[J]. Nature Communications, 2021, 12: 1686. [34] SONG J M, FENG X P, LI H Y, et al. Facile strategy for facet competition management to improve the performance of perovskite single-crystal X-ray detectors[J]. The Journal of Physical Chemistry Letters, 2020, 11(9): 3529-3535. [35] SONG Y L, WANG L X, SHI Y Q, et al. Detector-grade perovskite single-crystal wafers via stress-free gel-confined solution growth targeting high-resolution ionizing radiation detection[J]. Light: Science & Applications, 2023, 12: 85. [36] WEI H T, DESANTIS D, WEI W, et al. Dopant compensation in alloyed CH3NH3PbBr3-xClx perovskite single crystals for gamma-ray spectroscopy[J]. Nature Materials, 2017, 16: 826-833. [37] WANG X, WU Y, LI G W, et al. Ultrafast ionizing radiation detection by p-n junctions made with single crystals of solution-processed perovskite[J]. Advanced Electronic Materials, 2018, 4(11): 1800237. [38] BASIRICÒ L, CIAVATTI A, FRABONI B. Solution-grown organic and perovskite X-ray detectors: a new paradigm for the direct detection of ionizing radiation[J]. Advanced Materials Technologies, 2021, 6(1): 2000475. [39] 介万奇. Bridgman法晶体生长技术的研究进展[J]. 人工晶体学报, 2012, 41(S1): 24-35. JIE W Q. Research progress of Bridgman crystal growth technology[J]. Journal of Synthetic Crystals, 2012, 41(S1): 24-35 (in Chinese). [40] 覃皓明, 申南南, 何亦辉. 熔体法制备无机钙钛矿半导体核辐射探测晶体与器件的研究进展[J]. 人工晶体学报, 2021, 50(10): 1830-1843. QIN H M, SHEN N N, HE Y H. Research progress on the melt-grown inorganic perovskite semiconductor single crystals and devices for nuclear radiation detection[J]. Journal of Synthetic Crystals, 2021, 50(10): 1830-1843 (in Chinese). [41] LIU J, SHAO W Y, XU Q, et al. Subnanosecond X(γ)-ray sensor based on CH3NH3PbCl3 perovskite single crystals[J]. IEEE Photonics Technology Letters, 2020, 32(11): 635-638. [42] CHURILOV A V, CIAMPI G, KIM H, et al. Thallium bromide nuclear radiation detector development[J]. IEEE Transactions on Nuclear Science, 2009, 56(4): 1875-1881. [43] YUAN W N, NIU G D, XIAN Y M, et al. In situ regulating the order-disorder phase transition in Cs2AgBiBr6 single crystal toward the application in an X-ray detector[J]. Advanced Functional Materials, 2019, 29(20): 1900234. [44] SONG X, CUI Q Y, LIU Y C, et al. Metal-free halide perovskite single crystals with very long charge lifetimes for efficient X-ray imaging[J]. Advanced Materials, 2020, 32(42): e2003353. [45] LIU Y C, YANG Z, CUI D, et al. Two-inch-sized perovskite CH3NH3PbX3 (X=Cl, Br, I) crystals: growth and characterization[J]. Advanced Materials, 2015, 27(35): 5176-5183. [46] SHI D, ADINOLFI V, COMIN R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 2015, 347(6221): 519-522. [47] WEI H T, FANG Y J, MULLIGAN P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals[J]. Nature Photonics, 2016, 10: 333-339. [48] BAHTIAR A, RAHMANITA S, INAYATIE Y D. Pin-hole free perovskite film for solar cells application prepared by controlled two-step spin-coating method[J]. IOP Conference Series: Materials Science and Engineering, 2017, 196: 012037. [49] HE M, LI B, CUI X, et al. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells[J]. Nature Communications, 2017, 8: 16045. [50] KIM Y C, KIM K H, SON D Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging[J]. Nature, 2017, 550: 87-91. [51] GLUSHKOVA A, ANDRIČEVICĆ P, SMAJDA R, et al. Ultrasensitive 3D aerosol-jet-printed perovskite X-ray photodetector[J]. ACS Nano, 2021, 15(3): 4077-4084. [52] ZHANG P, YANG J X, WEI S H. Manipulation of cation combinations and configurations of halide double perovskites for solar cell absorbers[J]. Journal of Materials Chemistry A, 2018, 6(4): 1809-1815. [53] SAPAROV B, MITZI D B. Organic-inorganic perovskites: structural versatility for functional materials design[J]. Chemical Reviews, 2016, 116(7): 4558-4596. [54] BHALLA A S, GUO R, ROY R. The perovskite structure-a review of its role in ceramic science and technology[J]. Material Research Innovations, 2000, 4(1): 3-26. [55] MCCLURE E T, BALL M R, WINDL W, et al. Cs2AgBiX6 (X=Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors[J]. Chemistry of Materials, 2016, 28(5): 1348-1354. [56] VOLONAKIS G, HAGHIGHIRAD A A, MILOT R L, et al. Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap[J]. The Journal of Physical Chemistry Letters, 2017, 8(4): 772-778. [57] OKAZAKI K, FUKUSHIMA H, NAKAUCHI D, et al. Investigation of Er∶Bi4Ge3O12 single crystals emitting near-infrared luminescence for scintillation detectors[J]. Journal of Alloys and Compounds, 2022, 903: 163834. [58] OKAZAKI K, ONODA D, FUKUSHIMA H, et al. Characterization of scintillation properties of Nd-doped Bi4Ge3O12 single crystals with near-infrared luminescence[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(16): 21677-21684. [59] YAO D L, GU M, LIU X L, et al. Fabrication and performance of columnar CsI(Tl) scintillation films with single preferred orientation[J]. IEEE Transactions on Nuclear Science, 2013, 60(3): 1632-1636. [60] CHA B K, KIM J Y, KIM T J, et al. Fabrication and imaging characterization of high sensitive CsI(Tl) and Gd2O2S(Tb) scintillator screens for X-ray imaging detectors[J]. Radiation Measurements, 2010, 45(3/4/5/6): 742-745. [61] EVANS R D. The atomic nucleus[M]. New York: McGraw-Hill, 1955. [62] 孟 钢, 叶雨琪, 范黎明, 等. 卤化物钙钛矿射线探测器材料研究进展[J]. 无机材料学报, 2020, 35(11): 1203-1213. MENG G, YE Y Q, FAN L M, et al. Recent progress of halide perovskite radiation detector materials[J]. Journal of Inorganic Materials, 2020, 35(11): 1203-1213 (in Chinese). [63] AHN C W, JO J H, KIM J C, et al. Highly ordered lead-free double perovskite halides by design[J]. Journal of Materiomics, 2020, 6(4): 651-660. [64] STOUMPOS C C, MALLIAKAS C D, PETERS J A, et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection[J]. Crystal Growth & Design, 2013, 13(7): 2722-2727. [65] HE Y H, ALEXANDER G C B, DAS S, et al. Controlling the vapor transport crystal growth of Hg3Se2I2 hard radiation detector using organic polymer[J]. Crystal Growth & Design, 2019, 19(4): 2074-2080. [66] WANG X, LI Y W, XU Y B, et al. Solution-processed halide perovskite single crystals with intrinsic compositional gradients for X-ray detection[J]. Chemistry of Materials, 2020, 32(12): 4973-4983. [67] LI Z, YANG M J, PARK J S, et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys[J]. Chemistry of Materials, 2016, 28(1): 284-292. [68] JIANG J Z, XIONG M, FAN K, et al. Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring[J]. Nature Photonics, 2022, 16: 575-581. [69] HUANG Y M, QIAO L, JIANG Y Z, et al. A-site cation engineering for highly efficient MAPbI3 single-crystal X-ray detector[J]. Angewandte Chemie, 2019, 58(49): 17834-17842. [70] LIU Y C, ZHANG Y X, ZHU X J, et al. Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging[J]. Advanced Materials, 2021, 33(8): e2006010. [71] WEI W, ZHANG Y, XU Q, et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging[J]. Nature Photonics, 2017, 11: 315-321. [72] FAN Z F, LIU J, ZUO W T, et al. Solution-processed MAPbBr3 and CsPbBr3 single-crystal detectors with improved X-Ray sensitivity via interfacial engineering[J]. Physica Status Solidi Applied Research, 2020, 217(9): 2000104. [73] SAKHATSKYI K, TUREDI B, MATT G J, et al. Stable perovskite single-crystal X-ray imaging detectors with single-photon sensitivity[J]. Nature Photonics, 2023, 17: 510-517. [74] YANG B, PAN W C, WU H D, et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging[J]. Nature Communications, 2019, 10: 1989. [75] CUI F C, ZHANG P, ZHANG L Z, et al. Liquid-phase epitaxial growth of large-area MAPbBr3-nCln/CsPbBr3 perovskite single-crystal heterojunction for enhancing sensitivity and stability of X-ray detector[J]. Chemistry of Materials, 2022, 34(21): 9601-9612. [76] JIN P, TANG Y J, LI D W, et al. Realizing nearly-zero dark current and ultrahigh signal-to-noise ratio perovskite X-ray detector and image array by dark-current-shunting strategy[J]. Nature Communications, 2023, 14: 626. [77] YAKUNIN S, DIRIN D N, SHYNKARENKO Y, et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites[J]. Nature Photonics, 2016, 10: 585-589. [78] HE Y H, KE W J, ALEXANDER G C B, et al. Resolving the energy of γ-ray photons with MAPbI3 single crystals[J]. ACS Photonics, 2018, 5(10): 4132-4138. [79] LIU X, XU M, HAO Y Y, et al. Solution-grown formamidinium hybrid perovskite (FAPbBr3) single crystals for α-particle and γ-ray detection at room temperature[J]. ACS Applied Materials & Interfaces, 2021, 13(13): 15383-15390. [80] ZHAO L, ZHOU Y, SHI Z F, et al. High-yield growth of FACsPbBr3 single crystals with low defect density from mixed solvents for gamma-ray spectroscopy[J]. Nature Photonics, 2023, 17: 315-323. |
[1] | 孙元龙, 胡子钰, 郑国宗. 大尺寸CH3NH3PbBr3晶体生长和光电性能表征[J]. 人工晶体学报, 2024, 53(8): 1313-1318. |
[2] | 马启司, 刘江高, 折伟林, 曹聪, 张立超, 赵超, 范叶霞, 周振奇. 基于CGSim模拟的炉膛空气对流对碲锌镉晶体生长温场影响研究[J]. 人工晶体学报, 2024, 53(8): 1344-1351. |
[3] | 凌昊, 徐乐, 陈思贤, 唐远之, 孙海滨, 郭学, 冯玉润, 胡强强. 溶液法生长大尺寸CsCu2I3钙钛矿单晶及其光学性能研究[J]. 人工晶体学报, 2024, 53(7): 1121-1126. |
[4] | 顾鹏, 雷沛, 叶帅, 胡晋, 吴戈. 顶部籽晶溶液法生长碳化硅单晶及其关键问题研究进展[J]. 人工晶体学报, 2024, 53(5): 741-759. |
[5] | 艾家辛, 万洪平, 钱俊兵, 韦华. VGF法磷化铟单晶炉加热器对炉内热场分布影响的研究[J]. 人工晶体学报, 2024, 53(5): 781-791. |
[6] | 邢佳斌, 李威, 贾松岩, 马亚丽, 李雪, 郑强. 低温碳化法制备高分散性纳米碳酸钙的研究[J]. 人工晶体学报, 2024, 53(5): 864-872. |
[7] | 黄昌保, 胡倩倩, 朱志成, 李亚, 毛长宇, 徐俊杰, 吴海信, 倪友保. 中长波Cr2+/Fe2+∶CdSe激光晶体生长及元件制备[J]. 人工晶体学报, 2024, 53(4): 551-553. |
[8] | 曹聪, 刘江高, 范叶霞, 李振兴, 周振奇, 马启司, 牛佳佳. 碲锌镉晶体生长温度梯度与界面形状稳定性关系的研究[J]. 人工晶体学报, 2024, 53(4): 641-648. |
[9] | 王萌萌, 尹延如, 丁晓圆, 张晶, 付秀伟, 贾志泰, 陶绪堂. 倍半氧化物晶体及其1~3 μm波段激光性能研究进展[J]. 人工晶体学报, 2023, 52(7): 1169-1194. |
[10] | 刘小虎, 李坚富, 朱昭捷, 涂朝阳, 王阁阳, 杨金芳, 朱江峰, 王燕. Yb∶CaGdAlO4晶体及其超快激光技术研究进展[J]. 人工晶体学报, 2023, 52(7): 1195-1207. |
[11] | 孙贵花, 张庆礼, 李加红, 罗建乔, 王小飞, 高进云. Yb,Ho∶GdScO3晶体生长及光谱性能分析[J]. 人工晶体学报, 2023, 52(7): 1243-1249. |
[12] | 刘青雄, 王天予, 刘孚安, 吴倩, 尹延如, 赫崇君, 高泽亮, 夏明军. 非线性光学晶体K3B6O10Br的生长与光电性能研究[J]. 人工晶体学报, 2023, 52(7): 1296-1301. |
[13] | 颜涛, 范雨杰, 徐峰, 陈昱, 罗敏. KLi(HC3N3O3)·2H2O晶体的电光效应和生长研究[J]. 人工晶体学报, 2023, 52(7): 1302-1307. |
[14] | 魏玲莉, 倪友保, 黄昌保, 吴海信, 王振友, 胡倩倩, 余学舟, 刘国晋, 周强. 大尺寸ZnTe晶体的生长与性能[J]. 人工晶体学报, 2023, 52(7): 1317-1324. |
[15] | 郭俊, 刘坚, 陈鹏, 宋青松, 张志恒, 徐晓东, 徐军. Nd∶CaYAlO4单晶光纤的生长及光谱性能研究[J]. 人工晶体学报, 2023, 52(7): 1345-1351. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||