人工晶体学报 ›› 2024, Vol. 53 ›› Issue (5): 741-759.
• 综合评述 • 下一篇
顾鹏, 雷沛, 叶帅, 胡晋, 吴戈
收稿日期:
2023-12-26
出版日期:
2024-05-15
发布日期:
2024-05-21
作者简介:
顾 鹏(1994—),男,重庆市人,工程师。E-mail:1620472714@qq.com
GU Peng, LEI Pei, YE Shuai, HU Jin, WU Ge
Received:
2023-12-26
Online:
2024-05-15
Published:
2024-05-21
摘要: 因其优异的物理特性,第三代半导体碳化硅(SiC)材料在高温、高频、高压及大功率电力电子器件和射频微波器件领域具有非常明确的应用前景。受限于自身技术特点,利用传统的物理气相输运(PVT)法制备SiC晶体仍面临许多技术挑战,难以满足当前电子器件对大尺寸、高质量和低成本SiC单晶衬底的迫切需求。顶部籽晶溶液(TSSG)法可以在更低的温度和近热力学平衡条件下实现SiC晶体制备,能够显著弥补PVT法的不足,正逐渐成为极具竞争力的低成本、高质量SiC单晶衬底创新技术之一。本文首先阐述了TSSG法生长SiC晶体的理论依据,并给出了各工艺环节要点,然后归纳了TSSG法生长SiC晶体的主要技术优势,梳理了国内外在该技术领域的研究现状并重点讨论了TSSG法生长SiC晶体关键技术问题、产生机制,以及可能的解决途径等。最后,对TSSG法生长SiC晶体的未来发展做出展望。
中图分类号:
顾鹏, 雷沛, 叶帅, 胡晋, 吴戈. 顶部籽晶溶液法生长碳化硅单晶及其关键问题研究进展[J]. 人工晶体学报, 2024, 53(5): 741-759.
GU Peng, LEI Pei, YE Shuai, HU Jin, WU Ge. Research Progress on the Growth of Silicon Carbide Single Crystal via Top-Seeded Solution Growth Method and Its Key Issues[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 741-759.
[1] LANGPOKLAKPAM C, LIU A C, CHU K H, et al. Review of silicon carbide processing for power MOSFET[J]. Crystals, 2022, 12(2): 245. [2] VERMA J, PANT S, KUMAR A, et al. Analysis of trench termination in 4H-nSiC based power devices[J]. Materials Today: Proceedings, 2021, 46: 11072-11076. [3] IANNACCONE G, SBRANA C, MORELLI I, et al. Power electronics based on wide-bandgap semiconductors: opportunities and challenges[J]. IEEE Access, 2021, 9: 139446-139456. [4] SINGH S, CHAUDHARY T, KHANNA G. Recent advancements in wide band semiconductors (SiC and GaN) technology for future devices[J]. Silicon, 2022, 14(11): 5793-5800. [5] LIU G Y, WU Y B, LI K J, et al. Development of high power SiC devices for rail traction power systems[J]. Journal of Crystal Growth, 2019, 507: 442-452. [6] MILLÁN J, GODIGNON P, PERPIÑÀ X, et al. A survey of wide bandgap power semiconductor devices[J]. IEEE Transactions on Power Electronics, 2014, 29(5): 2155-2163. [7] KIMOTO T. Material science and device physics in SiC technology for high-voltage power devices[J]. Japanese Journal of Applied Physics, 2015, 54(4): 040103. [8] LIANG G Q, QIAN H, SU Y L, et al. Review of solution growth techniques for 4H-SiC single crystal[J]. China Foundry, 2023, 20(2): 159-178. [9] POWELL A R, SUMAKERIS J J, KHLEBNIKOV Y, et al. Bulk growth of large area SiC crystals[J]. Materials Science Forum, 2016, 858: 5-10. [10] KIMOTO T. Bulk and epitaxial growth of silicon carbide[J]. Progress in Crystal Growth and Characterization of Materials, 2016, 62(2): 329-351. [11] YANG X L, PAN Y N, GAO C, et al. Development of high quality 8 inch 4H-SiC substrates[J]. Solid State Phenomena, 2023, 344: 41-46. [12] HA M T, JEONG S M. A review of the simulation studies on the bulk growth of silicon carbide single crystals[J]. Journal of the Korean Ceramic Society, 2022, 59(2): 153-179. [13] ZHONG G L, XIE X J, WANG D S, et al. Growth of p-type 4H-SiC single crystals by physical vapor transport using p-type SiC powder[J]. CrystEngComm, 2022, 24(44): 7861-7868. [14] ELLISON A, MAGNUSSON B, SON N T, et al. HTCVD grown semi-insulating SiC substrates[J]. Materials Science Forum, 2003, 433/434/435/436: 33-38. [15] DANNO K, SAITOH H, SEKI A, et al. High-speed growth of high-quality 4H-SiC bulk by solution growth using Si-Cr based melt[J]. Materials Science Forum, 2010, 645/646/647/648: 13-16. [16] HOFMANN D H, MÜLLER M H. Prospects of the use of liquid phase techniques for the growth of bulk silicon carbide crystals[J]. Materials Science and Engineering: B, 1999, 61/62: 29-39. [17] WANG G B, SHENG D, YANG Y F, et al. High-quality and wafer-scale cubic silicon carbide single crystals[J]. Energy & Environmental Materials, 2023: 12678. [18] MA R H, ZHANG H, HA S, et al. Integrated process modeling and experimental validation of silicon carbide sublimation growth[J]. Journal of Crystal Growth, 2003, 252(4): 523-537. [19] WELLMANN P J. Power electronic semiconductor materials for automotive and energy saving applications - SiC, GaN, Ga2O3, and diamond[J]. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643(21): 1312-1322. [20] KUSUNOKI K, MUNETOH S, KAMEI K, et al. Solution growth of self-standing 6H-SiC single crystal using metal solvent[J]. Materials Science Forum, 2004, 457/458/459/460: 123-126. [21] HYUN K Y, TAISHI T, SUZUKI K, et al. Experimental determination of carbon solubility in Si0.56Cr0.4M0.04 (M=transition metal) solvents for solution growth of SiC[J]. Materials Science Forum, 2018, 924: 43-46. [22] KAWANISHI S, NAGAMATSU Y, YOSHIKAWA T, et al. Availability of Cr-rich Cr-Si solvent for rapid solution growth of 4H-SiC[J]. Journal of Crystal Growth, 2020, 549: 125877. [23] HARADA S, HATASA G, MURAYAMA K, et al. Solvent design for high-purity SiC solution growth[C]//2016 European Conference on Silicon Carbide & Related Materials (ECSCRM). Halkidiki, Greece. IEEE, 2016: 1. [24] DAIKOKU H, KAWANISHI S, ISHIKAWA T, et al. Density, surface tension, and viscosity of liquid Si-Cr alloys and influence on temperature and fluid flow during solution growth of SiC[J]. The Journal of Chemical Thermodynamics, 2021, 160: 106476. [25] KOMATSU N, MITANI T, HAYASHI Y, et al. Modification of the surface morphology of 4H-SiC by addition of Sn and Al in solution growth with SiCr solvents[J]. Journal of Crystal Growth, 2017, 458: 37-43. [26] DAIKOKU H, KAWANISHI S, ISHIKAWA T, et al. Measurement of melt properties of Si-40 mol%Cr solvent and influence to SiC in the solution growth[C]. The 65th JSAP Spring Meeting, 2018. [27] DANG Y F, ZHU C, LIU X, et al. Numerical investigation of solute evaporation in crystal growth from solution: a case study of SiC growth by TSSG method[J]. Journal of Crystal Growth, 2022, 579: 126448. [28] MITANI T, KOMATSU N, TAKAHASHI T, et al. Growth rate and surface morphology of 4H-SiC crystals grown from Si-Cr-C and Si-Cr-Al-C solutions under various temperature gradient conditions[J]. Journal of Crystal Growth, 2014, 401: 681-685. [29] WANG G B, SHENG D, LI H, et al. Influence of interfacial energy on the growth of SiC single crystals from high temperature solutions[J]. CrystEngComm, 2023, 25(4): 560-566. [30] HYUN K, KIM S J, TAISHI T. Effect of cobalt addition to Si-Cr solvent in top-seeded solution growth[J]. Applied Surface Science, 2020, 513: 145798. [31] KAWANISHI S, YOSHIKAWA T. Measurement and thermodynamics of carbon solubilities in molten Si-Fe, Si-Ni, and Si-Cr-Fe alloys at 2073 K[J]. ISIJ International, 2020, 60(10): 2123-2128. [32] NARUMI T, KAWANISHI S, YOSHIKAWA T, et al. Thermodynamic evaluation of the C-Cr-Si, C-Ti-Si, and C-Fe-Si systems for rapid solution growth of SiC[J]. Journal of Crystal Growth, 2014, 408: 25-31. [33] KADO M, DAIKOKU H, SAKAMOTO H, et al. High-speed growth of 4H-SiC single crystal using Si-Cr based melt[J]. Materials Science Forum, 2013, 740/741/742: 73-76. [34] TAIROV Y M, TSVETKOV V F. Progress in controlling the growth of polytypic crystals[J]. Progress in Crystal Growth and Characterization, 1983, 7(1/2/3/4): 111-162. [35] MERCIER F, DEDULLE J M, CHAUSSENDE D, et al. Coupled heat transfer and fluid dynamics modeling of high-temperature SiC solution growth[J]. Journal of Crystal Growth, 2010, 312(2): 155-163. [36] HA M T, SHIN Y J, BAE S Y, et al. Effect of hot-zone aperture on the growth behavior of SiC single crystal produced via top-seeded solution growth method[J]. Journal of the Korean Ceramic Society, 2019, 56(6): 589-595. [37] HA M T, SHIN Y J, LEE M H, et al. Effects of the temperature gradient near the crystal-melt interface in top seeded solution growth of SiC crystal[J]. Physica Status Solidi (a), 2018, 215(20): 1701017. [38] DANG Y F, ZHU C, IKUMI M, et al. Adaptive process control for crystal growth using machine learning for high-speed prediction: application to SiC solution growth[J]. CrystEngComm, 2021, 23(9): 1982-1990. [39] STEIN R A, LANIG P. Control of polytype formation by surface energy effects during the growth of SiC monocrystals by the sublimation method[J]. Journal of Crystal Growth, 1993, 131(1/2): 71-74. [40] HARADA S, YAMAMOTO Y, XIAO S, et al. Surface morphology and threading dislocation conversion behavior during solution growth of 4H-SiC using Al-Si solvent[J]. Materials Science Forum, 2014, 778/779/780: 67-70. [41] SHIN Y J, ARIYAWONG K, DOISNEAU B, et al. Experimental investigation of the seeding stage during SiC solution growth using Si and Al-Si solvents[J]. Materials Science Forum, 2016, 858: 81-84. [42] 王 宇, 顾 鹏, 付 君, 等. PVT法生长4H-SiC晶体及多型夹杂缺陷研究进展[J]. 人工晶体学报, 2022, 51(12): 2137-2152. WANG Y, GU P, FU J, et al. Research progress on the growth of 4H-SiC crystal by PVT method and the defect of polytype inclusions[J]. Journal of Synthetic Crystals, 2022, 51(12): 2137-2152 (in Chinese). [43] STEIN R A, LANIG P, LEIBENZEDER S. Influence of surface energy on the growth of 6H- and 4H-SiC polytypes by sublimation[J]. Materials Science and Engineering: B, 1992, 11(1/2/3/4): 69-71. [44] KAWAGUCHI K, SEKI K, KUSUNOKI K. Effect of melt-back process on the quality of grown crystal in SiC solution growth[J]. Materials Science Forum, 2019, 963: 75-79. [45] DAIKOKU H, KADO M, SAKAMOTO H, et al. Top-seeded solution growth of 4H-SiC bulk crystal using Si-Cr based melt[J]. Materials Science Forum, 2012, 717/718/719/720: 61-64. [46] MURAYAMA K, HORI T, HARADA S, et al. Two-step SiC solution growth for dislocation reduction[J]. Journal of Crystal Growth, 2017, 468: 874-878. [47] GUO H J, HUANG W, LIU X, et al. Analysis of polytype stability in PVT grown silicon carbide single crystal using competitive lattice model Monte Carlo simulations[J]. AIP Advances, 2014, 4(9): 097106. [48] LIU B T, YU Y, TANG X, et al. Improvement of growth interface stability for 4-inch silicon carbide crystal growth in TSSG[J]. Crystals, 2019, 9(12): 653. [49] WANG Y, GU P, WANG P G. Improvement of surface morphology by optimizing the growth conditions in solution growth of SiC single crystal[J]. Journal of Crystal Growth, 2023, 605: 127074. [50] WANG R, HUANG Y C, YANG D R, et al. Impurities and defects in 4H silicon carbide[J]. Applied Physics Letters, 2023, 122(18): 180501. [51] HAYASHI Y, MITANI T, KOMATSU N, et al. Control of temperature distribution to suppress macro-defects in solution growth of 4H-SiC crystals[J]. Journal of Crystal Growth, 2019, 523: 125151. [52] KAWANISHI S, KAMIKO M, YOSHIKAWA T, et al. Analysis of the spiral step structure and the initial solution growth behavior of SiC by real-time observation of the growth interface[J]. Crystal Growth & Design, 2016, 16(9): 4822-4830. [53] KAWANISHI S, SHIBATA H, YOSHIKAWA T. Contribution of dislocations in SiC seed crystals on the melt-back process in SiC solution growth[J]. Materials, 2022, 15(5): 1796. [54] HA M T, SHIN Y J, BAE S Y, et al. Effect of residual droplet on the solution-grown SiC single crystals[J]. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2019, 32: 516-521. [55] YU Y J, BYEON D S, SHIN Y J, et al. Residual stress analysis of 4H-SiC crystals obtained by a top-seeded solution growth method[J]. CrystEngComm, 2017, 19(45): 6731-6735. [56] KUSUNOKI K, SEKI K, KISHIDA Y, et al. Development of solvent inclusion free 4H-SiC off-axis wafer grown by the top-seeded solution growth technique[J]. Materials Science Forum, 2018, 924: 31-34. [57] WELLMANN P J. Review of SiC crystal growth technology[J]. Semiconductor Science Technology, 2018, 33(10): 103001. [58] SANCHEZ E M, HEYDEMANN V D, SNYDER D, et al. Thermal decomposition cavities in physical vapor transport grown SiC[J]. Materials Science Forum, 2000, 338/339/340/341/342: 55-58. [59] DUDLEY M, HUANG X R, HUANG W, et al. The mechanism of micropipe nucleation at inclusions in silicon carbide[J]. Applied Physics Letters, 1999, 75(6): 784. [60] UJIHARA T, MUNETOH S, KUSUNOKI K, et al. Crystal quality evaluation of 6h-SiC layers grown by liquid phase epitaxy around micropipes using micro-raman scattering spectroscopy[J]. Materials Science Forum, 2004, 457/458/459/460: 633-636. [61] NAKAMURA D, GUNJISHIMA I, YAMAGUCHI S, et al. Ultrahigh-quality silicon carbide single crystals[J]. Nature, 2004, 430: 1009-1012. [62] KONDO H, TAKABA H, YAMADA M, et al. Development of RAF quality 150 mm 4H-SiC wafer[J]. Materials Science Forum, 2014, 778/779/780: 17-21. [63] DANNO K, YAMAGUCHI S, KIMOTO H, et al. Trials of solution growth of dislocation-free 4H-SiC bulk crystals[J]. Materials Science Forum, 2016, 858: 19-22. [64] YAMAMOTO Y, HARADA S, SEKI K, et al. High-efficiency conversion of threading screw dislocations in 4H-SiC by solution growth[J]. Applied Physics Express, 2012, 5(11): 115501. [65] TSUCHIDA H, TAKANASHI R, KAMATA I, et al. Deflection of threading dislocations in patterned 4H-SiC epitaxial growth[J]. Journal of Crystal Growth, 2014, 402: 260-266. [66] HARADA S, YAMAMOTO Y, SEKI K, et al. Evolution of threading screw dislocation conversion during solution growth of 4H-SiC[J]. APL Materials, 2013, 1(2): 022109. [67] YAMAMOTO Y, HARADA S, SEKI K, et al. Low-dislocation-density 4H-SiC crystal growth utilizing dislocation conversion during solution method[J]. Applied Physics Express, 2014, 7(6): 065501. [68] MURAYAMA K, HORI T, HARADA S, et al. SiC solution growth on Si face with extremely low density of threading screw dislocations for suppression of polytype transformation[C]//2016 European Conference on Silicon Carbide & Related Materials (ECSCRM). Halkidiki, Greece. IEEE, 2016: 1. [69] LIU X B, ZHU C, HARADA S, et al. Application of C-face dislocation conversion to 2 inch SiC crystal growth on an off-axis seed crystal[J]. CrystEngComm, 2019, 21(47): 7260-7265. [70] XIAO S Y, HARADA S, MURAYAMA K, et al. Conversion behavior of threading screw dislocations on C face with different surface morphology during 4H-SiC solution growth[J]. Crystal Growth & Design, 2016, 16(11): 6436-6439. [71] XIAO S, HARA N, HARADA S, et al. Research on solvent composition for different surface morphology on C face during 4H-SiC solution growth[J]. Materials Science Forum, 2015, 821/822/823: 39-42. [72] KOMATSU N, MITANI T, HAYASHI Y, et al. Influence of additives on surface smoothness and polytype stability in solution growth of n-type 4H-SiC[J]. Materials Science Forum, 2018, 924: 55-59. [73] ZHU C, HARADA S, SEKI K, et al. Influence of solution flow on step bunching in solution growth of SiC crystals[J]. Crystal Growth & Design, 2013, 13(8): 3691-3696. [74] UMEZAKI T, KOIKE D, HARADA S, et al. Improvement of surface morphology by solution flow control in solution growth of SiC on off-axis seeds[J]. Materials Science Forum, 2015, 821/822/823: 31-34. [75] MITANI T, KOMATSU N, TAKAHASHI T, et al. 4H-SiC growth from Si-Cr-C solution under Al and N co-doping conditions[J]. Materials Science Forum, 2015, 821/822/823: 9-13. [76] MITANI T, ETO K, KOMATSU N, et al. Reduction of threading screw dislocations in 4H-SiC crystals by a hybrid method with solution growth and physical vapor transport growth[J]. Journal of Crystal Growth, 2021, 568: 126189. [77] KUSUNOKI K, KAMEI K, OKADA N, et al. Top-seeded solution growth of 3 inch diameter 4H-SiC bulk crystal using metal solvents[J]. Materials Science Forum, 2014, 778/779/780: 79-82. [78] KUSUNOKI K, KAMEI K, SEKI K, et al. Nitrogen doping of 4H-SiC by the top-seeded solution growth technique using Si-Ti solvent[J]. Journal of Crystal Growth, 2014, 392: 60-65. [79] KIM-HAK O, LORENZZI J, JEGENYES N, et al. Further evidence of nitrogen induced stabilization of 3C-SiC polytype during growth from a Si-Ge liquid phase[J]. Materials Science Forum, 2010, 645/646/647/648: 163-166. [80] DAIKOKU H, KAWANISHI S, YOSHIKAWA T. Mechanism of replicating 4H-SiC polytype during solution growth on concave surface[J]. Crystal Growth & Design, 2018, 18(7): 3820-3826. [81] KOJIMA K, KATO T, ITO S, et al. Reducing stacking faults in highly doped N-type 4H-SiC crystal[J]. Materials Science Forum, 2011, 679/680: 8-11. [82] STRAUBINGER T L, BICKERMANN M, WEINGÄRTNER R, et al. Aluminum p-type doping of silicon carbide crystals using a modified physical vapor transport growth method[J]. Journal of Crystal Growth, 2002, 240(1/2): 117-123. [83] SHIRAI T, DANNO K, SEKI A, et al. Solution growth of p-type 4H-SiC bulk crystals with low resistivity[J]. Materials Science Forum, 2014, 778/779/780: 75-78. [84] 隋占仁, 徐凌波, 崔 灿, 等. 数值模拟顶部籽晶溶液生长法制备单晶碳化硅的研究进展[J]. 人工晶体学报, 2023, 52(6): 1067-1085. SUI Z R, XU L B, CUI C, et al. Research progress on numerical simulation of single crystal silicon carbide prepared by top-seeded solution growth method[J]. Journal of Synthetic Crystals, 2023, 52(6): 1067-1085 (in Chinese). [85] LI F C, HE L, YAN Z Y, et al. Effects of crystal rotation on the carbon transport in the top-seeded solution growth of SiC single crystal[J]. Journal of Crystal Growth, 2023, 607: 127112. [86] NAKANO K, MARUYAMA S, KATO T, et al. Direct visualization of kinetic reversibility of crystallization and dissolution behavior at solution growth interface of SiC in Si-Cr solvent[J]. Surfaces and Interfaces, 2022, 28: 101664. [87] KUSUNOKI K, KAMEI K, OKADA N, et al. Solution growth of SiC crystal with high growth rate using accelerated crucible rotation technique[J]. Materials Science Forum, 2006, 527/528/529: 119-122. [88] KIMOTO T, ITOH A, MATSUNAMI H. Step bunching in chemical vapor deposition of 6H- and 4H-SiC on vicinal SiC(0001) faces[J]. Applied Physics Letters, 1995, 66(26): 3645-3647. [89] BAUSER E, STRUNK H P. Microscopic growth mechanisms of semiconductors: experiments and models[J]. Journal of Crystal Growth, 1984, 69(2/3): 561-580. [90] WANG Z J, KAWAGUCHI T, MURAYAMA K, et al. Spatial distribution of carrier concentration in 4H-SiС crystal grown by solution method[J]. Materials Science Forum, 2016, 858: 57-60. [91] HORI T, MURAYAMA K, HARADA S, et al. Formation of basal plane dislocations introduced by collision of macrosteps on growth surface during SiC solution growth[C]//2016 European Conference on Silicon Carbide & Related Materials (ECSCRM). Halkidiki, Greece. IEEE, 2016: 1. [92] YAMAGUCHI T, OHTOMO K, SATO S, et al. Surface morphology and step instability on the (000-1)C facet of physical vapor transport-grown 4H-SiC single crystal boules[J]. Journal of Crystal Growth, 2015, 431: 24-31. [93] ZHOU H Q, MIURA H, DANG Y F, et al. Numerical modeling of the cellular structure formation process in SiC solution growth for suppression of solvent inclusions[J]. Crystal Growth & Design, 2023, 23(5): 3393-3401. [94] KURASHIGE K, AOSHIMA M, TAKEI K, et al. Effect of forced convection by crucible design in solution growth of SiC single crystal[J]. Materials Science Forum, 2015, 821/822/823: 22-25. [95] DANG Y F, LIU X B, ZHU C, et al. Modeling-based design of the control pattern for uniform macrostep morphology in solution growth of SiC[J]. Crystal Growth & Design, 2023, 23(2): 1023-1032. [96] MITANI T, KOMATSU N, TAKAHASHI T, et al. Effect of aluminum addition on the surface step morphology of 4H-SiC grown from Si-Cr-C solution[J]. Journal of Crystal Growth, 2015, 423: 45-49. [97] ONUMA A, MARUYAMA S, KOMATSU N, et al. Quantitative analysis of nanoscale step dynamics in high-temperature solution-grown single crystal 4H-SiC via in situ confocal laser scanning microscope[J]. Crystal Growth & Design, 2017, 17(5): 2844-2851. [98] LIU X B, DANG Y F, SUZUKI K, et al. Solvent design aiming at solution property induced surface stability: a case study using SiC solution growth[J]. Journal of Crystal Growth, 2022, 578: 126425. [99] SUZUKI K, TAISHI T. The effect of Al addition to a Cr solvent without molten Si on the surface morphology in a solution growth of SiC[J]. Japanese Journal of Applied Physics, 2020, 59(2): 025504. [100] MITANI T, KOMATSU N, KATO T. Variations of macrostep structures with solvent compositions in 4H-SiC solution growth[J]. Journal of the Japanese Association for Crystal Growth, 2018, 45. https://doi.org/10.19009/jjacg.3-45-2-02. [101] KUSUNOKI K, OKADA N, KAMEI K, et al. Top-seeded solution growth of three-inch-diameter 4H-SiC using convection control technique[J]. Journal of Crystal Growth, 2014, 395: 68-73. [102] HA M T, YU Y J, SHIN Y J, et al. Flow modification enhancing the growth rate in top seeded solution growth of SiC crystals[J]. RSC Advances, 2019, 9(45): 26327-26337. [103] KIM Y G, CHOI S H, SHIN Y J, et al. Modification of crucible shape in top seeded solution growth of SiC crystal[J]. Materials Science Forum, 2018, 924: 47-50. [104] KUSUNOKI K, KISHIDA Y, SEKI K. Solution growth of 4-inch diameter SiC single crystal using Si-Cr based solvent[J]. Materials Science Forum, 2019, 963: 85-88. [105] FUJII K, TAKEI K, AOSHIMA M, et al. Influences of solution flow and lateral temperature distribution on surface morphology in solution growth of SiC[J]. Materials Science Forum, 2015, 821/822/823: 35-38. [106] GUTKIN M Y, SHEINERMAN A G, ARGUNOVA T S, et al. Interaction of micropipes with foreign polytype inclusions in SiC[J]. Journal of Applied Physics, 2006, 100(9): 093518. [107] SUZUKI K, HYUN K Y, TAISHI T. Effect of the growth conditions on the crystal quality in solution growth of SiC using Cr solvent without molten Si[J]. Materials Science Forum, 2018, 924: 35-38. [108] HARADA S, ALEXANDER, SEKI K, et al. Polytype transformation by replication of stacking faults formed by two-dimensional nucleation on spiral steps during SiC solution growth[J]. Crystal Growth & Design, 2012, 12(6): 3209-3214. [109] HORIO A, HARADA S, KOIKE D, et al. Polytype control by activity ratio of silicon to carbon during SiC solution growth using multicomponent solvents[J]. Japanese Journal of Applied Physics, 2016, 55(1S): 01AC01. [110] SCHMITT E, STRAUBINGER T, RASP M, et al. Polytype stability and defects in differently doped bulk SiC[J]. Journal of Crystal Growth, 2008, 310(5): 966-970. [111] LORENZZI J, ZOULIS G, KIM-HAK O, et al. Low doped 3C-SiC layers deposited by the vapour-liquid-solid mechanism on 6H-SiC substrates[J]. Materials Science Forum, 2010, 645/646/647/648: 171-174. [112] GUO L L, WANG G B, LIN J W, et al. Enhanced carbon solubility in solvent for SiC rapid solution growth: thermodynamic evaluation of Cr-Ce-Si-C system[J]. Journal of Rare Earths, 2023, 41(8): 1272-1278. [113] STEINER J, NGUYEN B D, SANDFELD S, et al. Prevention of bunched basal plane dislocation arrays in 4H-SiC PVT-growth[J]. Solid State Phenomena, 2023, 343: 9-14. [114] MIYASAKA R, KAWANISHI S, NARUMI T, et al. Solution growth of silicon carbide using unary chromium solvent[J]. Journal of Crystal Growth, 2017, 460: 23-26. [115] KAWANISHI S, DAIKOKU H, SHIBATA H, et al. Suppressing solvent compositional change during solution growth of SiC using SiC/C gradient crucible[J]. Journal of Crystal Growth, 2021, 576: 126382. |
[1] | 韩跃斌, 蒲勇, 施建新. 化学气相沉积法碳化硅外延设备技术进展[J]. 人工晶体学报, 2022, 51(7): 1300-1308. |
[2] | 王国宾, 李辉, 盛达, 王文军, 陈小龙. 高温溶液法生长SiC单晶的研究进展[J]. 人工晶体学报, 2022, 51(1): 3-20. |
[3] | 綦正超, 许庭翔, 刘学超, 王丁. 杂质和缺陷对SiC单晶导热性能的影响[J]. 人工晶体学报, 2021, 50(5): 816-824. |
[4] | 童静芳;阮青锋;任孟德;李夏云;张昌龙. 磷氯铅矿的水热法合成工艺及特征研究[J]. 人工晶体学报, 2018, 47(4): 709-714. |
[5] | 余凯;徐猛;王建敏;欧阳健明. 不同形貌二水草酸钙晶体的合成、表征及其对肾上皮细胞的损伤作用[J]. 人工晶体学报, 2016, 45(9): 2232-2239. |
[6] | 闫长领;李金;孟婷婷;刘珣;张瑞星;陈玉娟;王公轲. 水热条件下不同形貌和晶相碳酸钙的形成和转化[J]. 人工晶体学报, 2016, 45(7): 1796-1802. |
[7] | 郭炎飞;许岗;惠增哲. HgO-HI-H2O体系中碘化汞(HgI2)结晶形貌研究[J]. 人工晶体学报, 2014, 43(12): 3180-3184. |
[8] | 孙新园;欧阳健明;李玉宝;朱文玉. 晶体尺寸、形貌和表面粗糙度差异对细胞毒性的影响[J]. 人工晶体学报, 2014, 43(11): 2943-2949. |
[9] | 张群;陈敏;孙新园;潘玉锁. 柠檬酸钠作用下碳酸钙的制备[J]. 人工晶体学报, 2012, 41(2): 539-543. |
[10] | 杨辉;张园园. 壳聚糖分子对共沉淀法合成羟基磷灰石/壳聚糖粉体材料晶体形貌的影响[J]. 人工晶体学报, 2012, 41(1): 209-214. |
[11] | 赵珊茸;邱志惠;王蓉;王礼杰. 一些溶液法生长的晶体非平衡枝状形貌及其对称性分类[J]. 人工晶体学报, 2009, 38(4): 957-963. |
[12] | 仇满德;田帅;韦志仁;董国义. In和过渡金属离子共掺杂对ZnO晶体形貌的影响[J]. 人工晶体学报, 2009, 38(1): 48-52. |
[13] | 韦志仁;姚金宝;田帅;张利明;李振军;高平. 水热法制备微米级钇铝石榴石(YAG)晶体[J]. 人工晶体学报, 2009, 38(1): 179-183. |
[14] | 曹林洪;张震;徐光亮. BaTiO3改性PZNT91/9晶体的生长工艺研究[J]. 人工晶体学报, 2008, 37(6): 1435-1439. |
[15] | 郑敏珠;卢晗锋;刘华彦;陈银飞. 滴定过程控制Mg(OH)2晶体粒径和形貌[J]. 人工晶体学报, 2008, 37(5): 1249-1254. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||