[1] CAO J, HU T T, WANG D, et al. High-gravity-assisted intensified preparation of Er-doped and Yb/Er-codoped CaF2 upconversion nanophosphors for noncontact temperature measurement[J]. Industrial & Engineering Chemistry Research, 2022, 61(8): 2986-2996. [2] ZHOU J, LIU Q, FENG W, et al. Upconversion luminescent materials: advances and applications[J]. Chemical Reviews, 2015, 115(1): 395-465. [3] GOLDSCHMIDT J C, FISCHER S. Upconversion for photovoltaics-a review of materials, devices and concepts for performance enhancement[J]. Advanced Optical Materials, 2015, 3(4): 510-535. [4] 黄建华, 吴 杰, 黄艺东, 等. Er3+, Yb3+∶Ba3Gd(PO4)3晶体的生长、光谱和1.5 μm激光性能[J]. 人工晶体学报, 2023, 52(7): 1286-1295. HUANG J H, WU J, HUANG Y D, et al. Growth, spectroscopic and 1.5 μm laser properties of Er3+, Yb3+∶Ba3Gd(PO4)3 crystals[J]. Journal of Synthetic Crystals, 2023, 52(7): 1286-1295 (in Chinese). [5] TANABE S, YOSHII S, HIRAO K, et al. Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphate glasses[J]. Physical Review B, Condensed Matter, 1992, 45(9): 4620-4625. [6] TRUPKE T, GREEN M A, WURFEL P. Improving solar cell efficiencies by up-conversion of sub-band-gap light[J]. Journal of Applied Physics, 2002, 92(7): 4117-4122. [7] SILVA J F, SOARES A C C, SALES T O, et al. Optical nanothermometer of CaF2∶Yb3+/Er3+ nanocrystals under excitation at the minimum of the NIR-II biological window[J]. Journal of Luminescence, 2023, 263: 120143. [8] LIU L, WANG Y X, ZHANG X R, et al. Upconversion mechanisms and thermal effects of Er3+ in Er3+ doped yttria nanocrystals[J]. Journal of Luminescence, 2012, 132(6): 1483-1488. [9] TONG Y, LIU W P, DING S J. Upconversion luminescence and temperature sensing performance of Er3+ ions doped self-activated KYb(MoO4)2 phosphors[J]. Journal of Rare Earths, 2023. https://doi.org/10.1016/j.jre.2023.07.021. [10] 陈巧玲, 景伟国, 尚龙兵, 等. 固体中过渡金属离子占位、价态及光谱性质的第一性原理研究[J]. 发光学报, 2023, 44(7): 1220-1238. CHEN Q L, JING W G, SHANG L B, et al. First-principles calculations on site occupancy, valence state and luminescent properties of transition metal activators in solids[J]. Chinese Journal of Luminescence, 2023, 44(7): 1220-1238 (in Chinese). [11] SIVAKUMAR S, VAN VEGGEL F C J M, RAUDSEPP M. Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln3+-doped LaF3 nanoparticles[J]. Journal of the American Chemical Society, 2005, 127(36): 12464-12465. [12] WEI Y L, SU C H, ZHANG H B, et al. Color-tunable up-conversion emission from Yb3+/Er3+/Tm3+/Ho3+ codoped KY(MoO4)2 microcrystals based on energy transfer[J]. Ceramics International, 2016, 42(4): 4642-4647. [13] SHANG X Y, CHEN P, CHENG W J, et al. Fine tunable red-green upconversion luminescence from glass ceramic containing 5%Er3+∶NaYF4 nanocrystals under excitation of two near infrared femtosecond lasers[J]. Journal of Applied Physics, 2014, 116(6): 063101. [14] 文 飞, 涂大涛, 廉 纬, 等. 稀土掺杂无序结构晶体的局域位置对称性与发光调控[J]. 发光学报, 2023, 44(7): 1202-1219. WEN F, TU D T, LIAN W, et al. Local site symmetry and luminescence manipulation of lanthanide doped disordered crystals[J]. Chinese Journal of Luminescence, 2023, 44(7): 1202-1219 (in Chinese). [15] BENDALL P J, CATLOW C R A, CORISH J, et al. Defect aggregation in anion-excess fluorites II. Clusters containing more than two impurity atoms[J]. Journal of Solid State Chemistry, 1984, 51(2): 159-169. [16] ZHANG P X, LIAO J Y, NIU X C, et al. Intense 2.1-4.2 μm broadband emission of Co/Er∶PbF2 mid-infrared laser crystal[J]. Optics Letters, 2021, 46(16): 3913-3916. [17] MYASNIKOVA A, MYSOVSKY A, RADZHABOV E. First principle calculation of 4fn→4f(n-1) 5d absorption spectra of Ce3+ and Pr3+ ions in alkaline earth fluorides[J]. IEEE Transactions on Nuclear Science, 2012, 59(5): 2065-2068. [18] ZHANG B, ZHANG Z, HUANG B H, et al. Tailoring local coordination structure of the Er3+ ions for tuning the up-conversion multicolor luminescence[J]. Optics Express, 2020, 28(15): 22218. [19] CHEN Y, TAN J C, ZHANG P X, et al. Influence of Nd3+ concentration on mid-infrared emission in PbF2 crystal Co-doped with Ho3+ and Nd3+ ions[J]. Journal of Rare Earths, 2024, 42(3): 479-487. [20] LI X, ZHANG P X, YIN H, et al. Sensitization and deactivation effects of Nd3+ on the Er3+: 27 μm emission in PbF2 crystal[J]. Optical Materials Express, 2019, 9(4): 1698. [21] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. [22] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): A1133-A1138. [23] PERDEW J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas[J]. Physical Review B, Condensed Matter, 1986, 33(12): 8822-8824. [24] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, Condensed Matter, 1996, 54(16): 11169-11186. [25] BYRD R H, NOCEDAL J, SCHNABEL R B. Representations of quasi-Newton matrices and their use in limited memory methods[J]. Mathematical Programming, 1994, 63(1): 129-156. [26] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [27] GRAŽULIS S, CHATEIGNER D, DOWNS R T, et al. Crystallography open database-an open-access collection of crystal structures[J]. Journal of Applied Crystallography, 2009, 42(4): 726-729. [28] GRAŽULIS S, DAŠKEVIČ A, MERKYS A, et al. Crystallography open database (COD): an open-access collection of crystal structures and platform for world-wide collaboration[J]. Nucleic Acids Research, 2012, 40(D1): D420-D427. [29] MOMMA K, IZUMI F. VESTA: a three-dimensional visualization system for electronic and structural analysis[J]. Journal of Applied Crystallography, 2008, 41(3): 653-658. [30] MAKOV G, PAYNE M C. Periodic boundary conditions in ab initio calculations[J]. Physical Review B, Condensed Matter, 1995, 51(7): 4014-4022. [31] PERSSON C, ZHAO Y J, LANY S, et al. n-type doping of CuInSe2 and CuGaSe2[J]. Physical Review B, 2005, 72(3): 035211. [32] LANY S, ZUNGER A. Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: case studies for ZnO and GaAs[J]. Physical Review B, 2008, 78(23): 235104. [33] CORISH J, CATLOW C R A, JACOBS P W M, et al. Defect aggregation in anion-excess fluorites. Dopant monomers and dimers[J]. Physical Review B, 1982, 25(10): 6425-6438. [34] FU H H, PENG P F, LI R F, et al. A general strategy for tailoring upconversion luminescence in lanthanide-doped inorganic nanocrystals through local structure engineering[J]. Nanoscale, 2018, 10(19): 9353-9359. [35] BLASSE G. Energy transfer in oxidic phosphors[J]. Physics Letters A, 1968, 28(6): 444-445. [36] 李 琳, 谭慧瑜, 郑为比, 等. Er掺杂CGA晶体的生长及浓度优化研究[J]. 人工晶体学报, 2023, 52(7): 1325-1334. LI L, TAN H Y, ZHENG W B, et al. Growth and concentration optimization of Er-doped CGA crystals[J]. Journal of Synthetic Crystals, 2023, 52(7): 1325-1334 (in Chinese). [37] 付虎辉, 刘永升, 洪茂椿. 局域结构依赖的稀土上转换发光[J]. 中国稀土学报, 2021, 39(1): 24-34. FU H H, LIU Y S, HONG M C. Local-structure-dependent upconversion luminescence in lanthanide-doped nanocrystals[J]. Journal of the Chinese Society of Rare Earths, 2021, 39(1): 24-34 (in Chinese). [38] XIA Z G, MA C G, MOLOKEEV M S, et al. Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1-xMgx)(Al1-xSi1+x)O7∶Eu2+ phosphor[J]. Journal of the American Chemical Society, 2015, 137(39): 12494-12497. [39] SHI L S, SHEN Q Y, QIU Z Z. Concentration-dependent upconversion emission in Er-doped and Er/Yb-codoped LiTaO3 polycrystals[J]. Journal of Luminescence, 2014, 148: 94-97. [40] ZHOU J, ZHANG W X, LI J, et al. Upconversion luminescence of high content Er-doped YAG transparent ceramics[J]. Ceramics International, 2010, 36(1): 193-197. [41] DUNG CAO T M, GIANG LE T T, NHUNG NGUYEN T P, et al. Investigating the effect of Yb3+ and Er3+ concentration on red/green luminescent ratio in β-NaYF4∶Er, Yb nanocrystals using spectroscopic techniques[J]. Journal of Molecular Structure, 2020, 1210: 128014. [42] BAI Y F, YANG Y, DENG Y W, et al. Significant fluorescence enhancement through rapid laser annealing and nonthermal coupling optical temperature sensing of Er-doped yttria nanocrystals[J]. The Journal of Physical Chemistry C, 2022, 126(8): 3830-3838. [43] HU Y F, WANG D Q, LI Z J, et al. Upconversion luminescence properties of Er3+-Yb3+-codoped titania-zirconia composites[J]. Journal of the American Ceramic Society, 2010, 93(2): 374-377. [44] LI Y, WEI X T, YIN M. Synthesis and upconversion luminescent properties of Er3+ doped and Er3+-Yb3+ codoped GdOCl powders[J]. Journal of Alloys and Compounds, 2011, 509(41): 9865-9868. [45] AHN W, KIM Y J. Synthesis and up-conversion luminescence of Lu3Al5O12∶Yb3+, Er3+[J]. Optical Materials Express, 2016, 6(4): 1099. [46] XIE J H, WANG J, QIU G H, et al. A strategy to achieve efficient green-emission dual-mode luminescence of Yb3+, Er3+ doped NaBiF4[J]. Rare Metals, 2021, 40(8): 2040-2048. [47] HAO S W, SHAO W, QIU H L, et al. Tuning the size and upconversion emission of NaYF4∶Yb3+/Pr3+ nanoparticles through Yb3+ doping[J]. RSC Advances, 2014, 4(99): 56302-56306. |