欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2024, Vol. 53 ›› Issue (7): 1249-1256.

• 研究论文 • 上一篇    下一篇

Zn掺杂氮化硼的电子结构与光学性质的第一性原理研究

和志豪1,2, 苟杰1,2, 王云杰1,2, 齐亚杰1,2, 丁家福1,2, 张博1,2, 赵星胜1,2, 裴翊祯1,2, 侯姝宇1,2, 苏欣1,2   

  1. 1.伊犁师范大学物理科学与技术学院,伊宁 835000;
    2.伊犁师范大学新疆凝聚态相变与微结构实验室,伊宁 835000
  • 收稿日期:2023-12-11 出版日期:2024-07-15 发布日期:2024-07-23
  • 通信作者: 苏欣,博士,副教授。E-mail:suxin_phy@sina.com
  • 作者简介:和志豪(2001—),男,山东省人,硕士研究生。E-mail:834335211@qq.com
  • 基金资助:
    伊犁师范大学科研项目(2022YSZD004,22XKZZ21);伊犁师范大学大学生创新训练项目(S202210764014);新疆伊犁科技计划项目(YZ2022Y002);新疆维吾尔自治区天山英才计划第三期(2021—2023)

First-Principles Study on Electronic Structure and Optical Properties of Zn-Doped Boron Nitride

HE Zhihao1,2, GOU Jie1,2, WANG Yunjie1,2, QI Yajie1,2, DING Jiafu1,2, ZHANG Bo1,2, ZHAO Xingsheng1,2, PEI Yizhen1,2, HOU Shuyu1,2, SU Xin1,2   

  1. 1. School of Physical Science and Technology, Yili Normal University, Yining 835000, China;
    2. Xinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter Physics, Yili Normal University, Yining 835000, China
  • Received:2023-12-11 Online:2024-07-15 Published:2024-07-23

摘要: 本文基于密度泛函理论研究了三种浓度分别为0.062 5、0.125、0.25的Zn掺杂氮化硼(BN)的电子结构和光学性质。结果表明:掺杂后三种体系的缺陷形成能均大于零,为此又计算了其应力,发现三种体系能稳定存在。随着掺杂浓度的提高,体系的带隙逐渐减小,且B1-xZnxN(x=0, 0.062 5, 0.125)为直接带隙半导体,B0.75Zn0.25N为间接带隙半导体。Zn的掺入在费米能级附近引入了受主能级,使价带上移越过费米能级,掺杂体系均具有p型半导体的特征,降低了电子跃迁的难度。随着掺杂浓度的增大,四种体系的静介电常数逐渐增大,掺杂体系的虚部峰值逐渐减小,且在最高峰值处对应反射率的值逐渐变小。在低能量区域内,掺杂体系增强了对光的吸收,吸收边发生红移。掺杂体系中B—N键和N—Zn键的键强逐渐增强。结论显示,掺杂Zn原子可以有效改善BN的电子结构与光学性质。

关键词: BN, 第一性原理, Zn掺杂, 带隙, 电子结构, 光学性质

Abstract: In this paper, the electronic structure and optical properties of BN doped with different concentrations of Zn (0.062 5, 0.125, 0.25) were investigated based on the density functional theory. The results show that the defect formation energies of the three systems after doping are all greater than zero, for this reason the stresses are also calculated which verifies that all of them can exist stably. B1-xZnxN (x=0, 0.062 5, 0.125) is a direct bandgap semiconductor and B0.75Zn0.25N is an indirect bandgap semiconductor. The bandgap of the system gradually decreases with increasing doping concentration. The doping of Zn leads to the introduction of a receptor energy level near the Fermi level, resulting in the valence band being shifted up above the Fermi level, and the doped systems were all characterized by p-type semiconductor properties. With increasing doping concentration, the static permittivity of the systems gradually increases, the peak of the imaginary part of the doped system gradually decreases, and the value of the corresponding reflectivity at the highest peak gradually becomes smaller. In the low energy region, the doped systems all enhance the absorption of light and the absorption edge red shift. The bond strengths of B—N and N—Zn bonds in the doped systems gradually increase. To sum up, it can be concluded that doping Zn atoms can effectively improve the electronic structure as well as the optical properties of BN.

Key words: BN, first-principle, Zn doping, bandgap, electronic structure, optical property

中图分类号: