[1] SUPRIYONO, AMALIA E A, SOLIKHAH D N, et al. Porous biochar purification method from coconut shell by alkali roasting followed by leaching and its application as a lithium primary battery[J]. IOP Conference Series: Earth and Environmental Science, 2021, 749(1): 012036. [2] ZHOU P F, WONG P K, NIU P D, et al. Anodized AlCoCrFeNi high-entropy alloy for alkaline water electrolysis with ultra-high performance[J]. Science China Materials, 2023, 66(3): 1033-1041. [3] 张璐璐, 谭伯川, 李文坡. Cu2+掺杂MnO2作为水系锌离子电池正极材料的合成与电化学性能[J]. 化工学报, 2021, 72(10): 5402-5411. ZHANG L L, TAN B C, LI W P. Synthesis and electrochemical properties of Cu2+-doped MnO2 as cathode materials for aqueous zinc ion batteries[J]. CIESC Journal, 2021, 72(10): 5402-5411 (in Chinese). [4] KHAN N A, RAHMAN G, NGUYEN T M, et al. Recent development of nanostructured nickel metal-based electrocatalysts for hydrogen evolution reaction: a review[J]. Topics in Catalysis, 2023, 66(1): 149-181. [5] PARSIMEHR H, EHSANI A, PAYAM S A. Electrochemical energy storage electrodes from rice biochar[J]. Biomass Conversion and Biorefinery, 2023, 13(14): 12413-12429. [6] MEHDI R, NAQVI S R, KHOJA A H, et al. Biomass derived activated carbon by chemical surface modification as a source of clean energy for supercapacitor application[J]. Fuel, 2023, 348: 128529. [7] 牛文娟, 邓继猛, 冯雨欣, 等. 不同温度下水稻秸秆多孔生物炭结构与电化学性能[J]. 农业工程学报, 2022, 38(2): 231-240. NIU W J, DENG J M, FENG Y X, et al. Structure and electrochemical performances of porous biochar from rice straw at different temperatures[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(2): 231-240 (in Chinese). [8] LI C Y, FENG Y X, ZHONG F, et al. Optimization of microwave-assisted hydrothermal carbonization and potassium bicarbonate activation on the structure and electrochemical characteristics of crop straw-derived biochar[J]. Journal of Energy Storage, 2022, 55: 105838. [9] DU Y Y, YING Z, ZHENG X Y, et al. Efficient anodic biochar oxidation over three-dimensional self-support nickel-iron nanosheet on nickel foam in biochar-assisted water electrolysis for hydrogen production[J]. International Journal of Hydrogen Energy, 2023, 48(3): 894-908. [10] 费 洋, 黄 惠, 宋 爽, 等. 接枝聚合法制备PANI/CeO2-APTMS复合材料及其电化学性能[J]. 高分子材料科学与工程, 2017, 33(7): 81-87. FEI Y, HUANG H, SONG S, et al. Graft preparation and electrochemical properties of PANI/CeO2-APTMS composite[J]. Polymer Materials Science & Engineering, 2017, 33(7): 81-87 (in Chinese). [11] MARTINS J C, DE M NETO J C, PASSOS R R, et al. Electrochemical behavior of polyaniline: a study by electrochemical impedance spectroscopy (EIS) in low-frequency[J]. Solid State Ionics, 2020, 346: 115198. [12] LUCEÑO SÁNCHEZ J A, DÍEZ-PASCUAL A M, PEÑA CAPILLA R, et al. The effect of hexamethylene diisocyanate-modified graphene oxide as a nanofiller material on the properties of conductive polyaniline[J]. Polymers, 2019, 11(6): 1032. [13] YAO M Y, ZHAO X, ZHANG Q H, et al. Polyaniline nanowires aligned on MOFs-derived nanoporous carbon as high-performance electrodes for supercapacitor[J]. Electrochimica Acta, 2021, 390: 138804. [14] 王 彪, 陈鼎智, 马安宁, 等. 聚苯胺纳米线复合材料的制备与储能性分析[J]. 中国表面工程, 2023, 36(3): 121-131. WANG B, CHEN D Z, MA A N, et al. Synthesis and electrochemical properties of intercalated polyaniline nanowire composites[J]. China Surface Engineering, 2023, 36(3): 121-131 (in Chinese). [15] FIRDA P B D, MALIK Y T, OH J K, et al. Enhanced chemical and electrochemical stability of polyaniline-based layer-by-layer films[J]. Polymers, 2021, 13(17): 2992. [16] 王建明, 任治宇, 蔡鹤铭, 等. NiO-CuO纳米材料的制备及其电化学性能[J]. 微纳电子技术, 2022, 59(8): 771-777. WANG J M, REN Z Y, CAI H M, et al. Preparation of NiO-CuO nanometer materials and their electrochemical properties[J]. Micronanoelectronic Technology, 2022, 59(8): 771-777 (in Chinese). [17] 李欣蔚, 王丽英, 曹珍珠, 等. HP-CoFe2O4/C锂离子电池负极材料的制备及电化学性能研究[J]. 化工新型材料, 2022, 50(12): 121-128. LI X W, WANG L Y, CAO Z Z, et al. Synthesis and electrochemical performance of HP-CoFe2O4/C anode material for lithiumion battery[J]. New Chemical Materials, 2022, 50(12): 121-128 (in Chinese). [18] 徐 惠, 李 琦, 陈 泳, 等. 过渡金属离子电化学掺杂聚苯胺的超级电容性能[J]. 高分子材料科学与工程, 2018, 34(1): 83-88. XU H, LI Q, CHEN Y, et al. Polyaniline electrode doped with transition metal ions for electrochemical supercapacitors[J]. Polymer Materials Science & Engineering, 2018, 34(1): 83-88 (in Chinese). [19] LIU Y C, CHEN Y Q, ZHANG X X, et al. A high-voltage aqueous rechargeable zinc-polyaniline hybrid battery achieved by decoupling alkali-acid electrolyte[J]. Chemical Engineering Journal, 2022, 444: 136478. [20] 符 刚, 张秀玲. 碳纳米管@聚苯胺/二硫化钼复合材料的制备及其电化学性能研究[J]. 现代化工, 2023, 43(6): 205-211. FU G, ZHANG X L. Preparation of carbon nanotube@polyaniline/molybdenum disulfide composite for supercapacitor application[J]. Modern Chemical Industry, 2023, 43(6): 205-211 (in Chinese). [21] 李海瑞, 李智芳, 纪 帅, 等. PANI/MnOC生物质碳基电极材料的制备及电化学性能研究[J]. 功能材料, 2021, 52(8): 8118-8124. LI H R, LI Z F, JI S, et al. Preparation and electrochemical properties of PANI/MnOC composite biomass carbon materials[J]. Journal of Functional Materials, 2021, 52(8): 8118-8124 (in Chinese). [22] 韦会鸽, 彭紫芳, 陈安利, 等. 生物质基多级孔活性炭-聚苯胺复合材料的合成及其电化学储能性能[J]. 复合材料学报, 2022, 39(8): 4028-4036. WEI H G, PENG Z F, CHEN A L, et al. Synthesis and electrochemical energy storage performance of biomass-based porous hierarchical activated carbon-polyaniline composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4028-4036 (in Chinese). [23] CHEN Y C, XIE Y B. Electrochemical performance of manganese coordinated polyaniline[J]. Advanced Electronic Materials, 2019, 5(12): 1900816. [24] 苏燕平. Ni-BTC MOFs衍生材料及其性能研究[D]. 合肥: 中国科学技术大学, 2017. SU Y P. The synthesis and applications of Ni-BTC MOFs derivatives[D].Hefei: University of Science and Technology of China, 2017 (in Chinese). [25] 冯 准. 基于石墨烯电极的埃洛石/聚苯胺超高柔性复合电极储能材料与器件[J]. 储能科学与技术, 2023, 12(6): 1794-1803. FENG Z. Ultra-flexible halloysite/polyaniline composite electrode based on graphene electrode[J]. Energy Storage Science and Technology, 2023, 12(6): 1794-1803 (in Chinese). [26] 张亚婷, 任绍昭, 李景凯, 等. PANI/煤基石墨烯宏观体复合材料的制备及其电化学性能[J]. 化工学报, 2017, 68(11): 4316-4322. ZHANG Y T, REN S Z, LI J K, et al. Fabrication and electrochemical capacitive performance of PANI/coal-based three-dimensional graphene[J]. CIESC Journal, 2017, 68(11): 4316-4322 (in Chinese). [27] 张 政, 刘洪达, 宋朝霞, 等. 聚苯胺包覆CoFe类普鲁士蓝复合材料的超电容性能[J]. 复合材料学报, 2020, 37(3): 731-739. ZHANG Z, LIU H D, SONG Z X, et al. Supercapacitive performance of polyaniline coated CoFe Prussian blue analogue composite[J]. Acta Materiae Compositae Sinica, 2020, 37(3): 731-739 (in Chinese). [28] LEI D Y, LI X D, RADHAKRISHNAN S, et al. Polyaniline decorated salt activated phenolic resin/PAN-based carbon nanofibers with remarkable cycle stability for energy storage applications[J]. Materials Letters, 2023, 333: 133688. |