[1] BANERJEE P. Impact of thermally grown ZnS1-xOx buffer layer over the photovoltaic performance of SnS/ZnS heterostructure[J]. Materials Letters, 2022, 320: 132347. [2] REDDY N K, REDDY R K T. Optical behaviour of sprayed tin sulphide thin films[J]. Materials Research Bulletin, 2006, 41(2): 414-422. [3] CHO J Y, SINHA S, GANG M G, et al. Controlled thickness of a chemical-bath-deposited CdS buffer layer for a SnS thin film solar cell with more than 3% efficiency[J]. Journal of Alloys and Compounds, 2019, 796: 160-166. [4] 庄米雪. 铜铟硫半导体薄膜的制备及其在太阳能电池上的应用[D]. 广州: 广东工业大学, 2014. ZHUANG M X. The preparation of copper indium sulfide semiconductor thin films and its application in solar cells[D]. Guangzhou: Guangdong University of Technology, 2014 (in Chinese). [5] ÖZTÜRK H, ASLAN F. Preparation of high-quality SnS thin films for self-powered photodetectors and solar cells using a low-temperature powder technique[J]. Optical Materials, 2022, 131: 112755. [6] LEE N, BANG M, CHOI H, et al. Effect of H2 annealing on SnS thin films grown by thermal evaporation and their transfer characteristics with Ti, W, and Mo electrodes[J]. Thin Solid Films, 2021, 732: 138779. [7] ASLAN F, ARSLAN F, TUMBUL A, et al. Synthesis and characterization of solution processed p-SnS and n-SnS2 thin films: effect of starting chemicals[J]. Optical Materials, 2022, 127: 112270. [8] AREPALLI V K, SHIN Y, KIM J. Photovoltaic behavior of the room temperature grown RF-Sputtered SnS thin films[J]. Optical Materials, 2019, 88: 594-600. [9] ZHAO X Z, DAVIS L M, LOU X B, et al. Study of the crystal structure of SnS thin films by atomic layer deposition[J]. AIP Advances, 2021, 11(3): 035144. [10] MAHDI M S, AL-ARAB H S, HMOOD A, et al. Structure, morphology, and photoresponse characteristics dependence on substrate nature of grown π-SnS films using chemical bath deposition[J]. Optical Materials, 2022, 123: 111910. [11] OGAH O E, REDDY K R, ZOPPI G, et al. Annealing studies and electrical properties of SnS-based solar cells[J]. Thin Solid Films, 2011, 519(21): 7425-7428. [12] GHOSH B, DAS M, BANERJEE P, et al. Fabrication of vacuum-evaporated SnS/CdS heterojunction for PV applications[J]. Solar Energy Materials and Solar Cells, 2008, 92(9): 1099-1104. [13] REDDY R K T, REDDY K N, MILES R W. Photovoltaic properties of SnS based solar cells[J]. Solar Energy Materials and Solar Cells, 2006, 90(18-19): 3041-3046. [14] FERHATI H, DJEFFAL F, ABDELMALEK F. Towards improved efficiency of SnS solar cells using back grooves and strained-SnO2 buffer layer: FDTD and DFT calculations[J]. Journal of Physics and Chemistry of Solids, 2023, 178: 111353. [15] ARULANANTHAM A M S, VALANARASU S, KATHALINGAM A, et al. An investigation on SnS layers for solar cells fabrication with CdS, SnS2 and ZnO window layers prepared by nebulizer spray method[J]. Applied Physics A, 2018, 124(11): 776. [16] PANDEY S, SADANAND, SINGH P K, et al. Numerical studies of optimising various buffer alyers to enhance the performance of tin sulfide (SnS)-based solar cells[J]. Transactions on Electrical and Electronic Materials, 2021, 22(6): 893-903. [17] JIANG F, SHEN H L, JIAO J. Effect of the thickness on the optoelectronic properties of SnS films and photovoltaic performance of SnS/i-a-Si/n-a-Si solar cells[J]. Applied Physics A, 2014, 117(4): 2167-2173. [18] XU J X, YANG Y Z. Study on the performances of SnS heterojunctions by numerical analysis[J]. Energy Conversion and Management, 2014, 78: 260-265. [19] MIYAWAKI T, ICHIMURA M. Fabrication of ZnS thin films by an improved photochemical deposition method and application to ZnS/SnS heterojunction cells[J]. Materials Letters, 2007, 61(25): 4683-4686. [20] QIU K F, XIE Q, QIU D P, et al. Fabrication and simulation of ZnS/p-Si heterojunction solar cells[J]. Materials Letters, 2017, 198: 760-764. [21] ABDALLAH B, ALNAMA K, NASRALLAH F. Deposition of ZnS thin films by electron beam evaporation technique, effect of thickness on the crystallographic and optical properties[J]. Modern Physics Letters B, 2019, 33(4): 1950034. [22] TORRES-RICÁRDEZ R, LIZAMA-TZEC F I, GARCÍA-MENDOZA M F, et al. Electrodeposited stoichiometric zinc sulfide films[J]. Ceramics International, 2020, 46(8): 10490-10494. [23] ATES A, YLDRM M A, KUNDAKC M, et al. Annealing and light effect on optical and electrical properties of ZnS thin films grown with the SILAR method[J]. Materials Science in Semiconductor Processing, 2007, 10(6): 281-286. [24] ZHANG W J, ZHANG Q, ZHANG Y B, et al. CdSe/ZnS quantum-dot light-emitting diodes with spiro-OMeTAD as buffer layer[J]. IEEE Transactions on Electron Devices, 2019, 66(11): 4901-4906. [25] LOU Q, LI H L, HUANG Q S, et al. Multifunctional CNT∶TiO2 additives in spiro-OMeTAD layer for highly efficient and stable perovskite solar cells[J]. EcoMat, 2021, 3(3): e12099. [26] TIWARI P, ALOTAIBI M F, AL-HADEETHI Y, et al. Design and simulation of efficient SnS-based solar cell using spiro-OMeTAD as hole transport Layer[J]. Nanomaterials, 2022, 12(14): 2506. [27] WANG Y P, WANG J, LI H R, et al. wxAMPS theoretical study of the bandgap structure of CZTS thin film to improve the device performance[J]. Optoelectronics Letters, 2021, 17(8): 475-481. [28] LIU Y M, SUN Y, ROCKETT A. A new simulation software of solar cells—wxAMPS[J]. Solar Energy Materials and Solar Cells, 2012, 98: 124-128. [29] YING M, WEN J J, ZHAO Y. Numerical simulation of CuInSe2 solar cells using wxAMPS software[J]. Chinese Journal of Physics, 2022, 76: 24-34. [30] YUAN J R, WANG J S, LIU S Q, et al. Numerical simulation of SnS/CZTSSe heterojunction solar cells[J]. Journal of Ovonic Research, 2023, 19(1): 31-41. [31] XIAO L, WANG G X, YAO J X. Enhanced hole extraction in green energy perovskite solar cell by CuOx/spiro-OMeTAD bilayer with improved performance[J]. IOP Conference Series: Earth and Environmental Science, 2021, 804(3): 032062. [32] HOSSAIN M I, ALHARBI F H, TABET N. Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells[J]. Solar Energy, 2015, 120: 370-380. [33] KEARNEY K L, ROCKETT A A. Simulation of charge transport and recombination across functionalized Si (111) photoelectrodes[J]. Journal of the Electrochemical Society, 2016, 163(7): H598-H604. [34] 陈 超. Zn(O, S)缓冲层薄膜的制备及其在太阳能电池上的应用[D]. 福州: 福州大学, 2016. CHEN C. Preparation of Zn(O, S) buffer layer thin films and their application in solar cells[D]. Fuzhou: Fuzhou University, 2016 (in Chinese). [35] 肖友鹏, 王怀平, 冯 林.硒化亚锗异质结太阳电池模拟研究[J]. 物理学报, 2023, 72(24): 248801. XIAO Y P, WANG H P, Feng L. Numerical simulation of germanium selenide heterojunction solar cell[J]. Acta Physical Sinica, 2023, 72(24): 248801 (in Chinese). [36] GUPTA Y, ARUN P. Optimization of SnS active layer thickness for solar cell application[J]. Journal of Semiconductors, 2017, 38(11): 113001. [37] MARINOVA N, TRESS W, HUMPHRY-BAKER R, et al. Light harvesting and charge recombination in CH3NH3PbI3 perovskite solar cells studied by hole transport layer thickness variation[J]. ACS Nano, 2015, 9(4): 4200-4209. [38] 方 毅, 赵文宁, 韩修训. 吸收层及缓冲层厚度对Cu3BiS3太阳能电池的性能影响[J]. 有色金属科学与工程, 2021, 12(2): 50-55. FANG Y, ZHAO W N, HAN X X. Effects of thickness of absorption layer and buffer layer on the performance of Cu3BiS3 solar cell[J]. Nonferrous Metals Science and Engineering, 2021, 12(2): 50-55 (in Chinese). [39] BHARGAVA R N, GALLAGHER D, HONG X, et al. Optical properties of manganese-doped nanocrystals of ZnS[J]. Physical Review Letters, 1994, 72(3): 416-419. [40] NAZ H, ALI R N, ZHU X Q, et al. Effect of Mo and Ti doping concentration on the structural and optical properties of ZnS nanoparticles[J]. Physica E Low-dimensional Systems and Nanostructures, 2018, 100: 1-6. [41] RAJ C J, PRABAKAR K, KARTHICK S N, et al. Banyan root structured Mg-doped ZnO photoanode dye-sensitized solar cells[J]. The Journal of Physical Chemistry C, 2013, 117(6): 2600-2607. [42] JABEEN U, SHAH S M, HUSSAIN N, et al. Synthesis, characterization, band gap tuning and applications of Cd-doped ZnS nanoparticles in hybrid solar cells[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 325: 29-38. [43] WÜRFEL U, CUEVAS A, WÜRFEL P. Charge carrier separation in solar cells[J]. IEEE Journal of Photovoltaics, 2015, 5(1): 461-469. [44] ALIAGHAYEE M. Optimization of the perovskite solar cell design with layer thickness engineering for improving the photovoltaic response using SCAPS-1D[J]. Journal of Electronic Materials, 2023, 52(4): 2475-2491. [45] LI Y T, WEI L, ZHANG R Z, et al. Annealing effect on Sb2S3-TiO2 nanostructures for solar cell applications[J]. Nanoscale Research Letters, 2013, 8(1): 89. [46] SPALATU N, HIIE J, KAUPMEES R, et al. Postdeposition processing of SnS thin films and solar cells: prospective strategy to obtain large, sintered, and doped SnS grains by recrystallization in the presence of a metal halide flux[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17539-17554. [47] 邹文珍, 张 楚, 蒋洪敏, 等. 过渡金属掺杂在钙钛矿光伏器件中的应用[J]. 激光与光电子学进展, 2023, 60(9): 55-76. ZOU W Z, ZHANG C, JIANG H M, et al. Application of transition metal doping in perovskite photovoltaic devices[J]. Laser & Optoelectronics Progress, 2023, 60(9): 55-76(in Chinese). [48] NAKKA L, CHENG Y H, ABERLE A G, et al. Analytical review of spiro-OMeTAD hole transport materials: paths toward stable and efficient perovskite solar cells[J]. Advanced Energy and Sustainability Research, 2022, 3(8): 2200045. [49] WANG S B, SUN W H, ZHANG M J, et al. Strong electron acceptor additive based spiro-OMeTAD for high-performance and hysteresis-less planar perovskite solar cells[J]. RSC Advances, 2020, 10(64): 38736-38745. [50] CHEN D Y, TSENG W H, LIANG S P, et al. Application of F4TCNQ doped spiro-MeOTAD in high performance solid state dye sensitized solar cells[J]. Physical Chemistry Chemical Physics, 2012, 14(33): 11689-11694. [51] REN G H, HAN W B, DENG Y Y, et al. Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review[J]. Journal of Materials Chemistry A, 2021, 9(8): 4589-4625. [52] 肖友鹏, 王怀平. 硫化锑同质结薄膜太阳电池设计与缺陷分析[J]. 光学学报, 2022, 42(23): 2331002. XIAO Y P, WANG H P. Design and defect analysis of Sb2S3 homojunction thin film solar cells[J]. Acta Optica Sinica, 2022, 42(23): 2331002 (in Chinese). [53] 党新志. ZnS及其多层薄膜光电性能与缺陷研究[D]. 武汉: 武汉科技大学, 2023. DANG X Z. Photoelectric properties and defects of ZnS and its multilayer films[D]. Wuhan: Wuhan University of Science and Technology, 2023 (in Chinese). [54] VIDAL J, LANY S, D’AVEZAC M, et al. Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS[J]. Applied Physics Letters, 2012, 100(3): 032104. [55] 赵伟强. 基于SnS的高性能铜锡硫薄膜太阳能电池[D]. 郑州: 河南大学, 2022. ZHAO W Q. SnS based high-performance CTS thin film solar cells[D].Zhengzhou: Henan University, 2022 (in Chinese). [56] 王傲霜, 肖清泉, 陈 豪, 等. GaN/Si单异质结太阳电池的模拟[J]. 光学学报, 2020, 40(24): 2416001. WANG A S, XIAO Q Q, CHEN H, et al. Simulation on GaN/Si single heterojunction solar cells[J]. Acta Optica Sinica, 2020, 40(24): 2416001 (in Chinese). [57] 张柳江, 王晨越, 苏圳煌, 等. 全无机钙钛矿CsPbI2Br与Spiro-OMeTAD界面电子结构的研究[J]. 核技术, 2022, 45(4): 11-18. ZHANG L J, WANG C Y, SU Z H, et al. Study of the interfacial electronic structure at the CsPbI2Br/Spiro-OMeTAD interface[J]. Nuclear Techniques, 2022, 45(4): 11-18 (in Chinese). |