[1] ADOBES-VIDAL M, MADDAR F M, MOMOTENKO D, et al. Face-discriminating dissolution kinetics of furosemide single crystals: in situ three-dimensional multi-microscopy and modeling[J]. Crystal Growth & Design, 2016, 16(8): 4421-4429. [2] BOLLA G, SARMA B, NANGIA A K. Crystal engineering of pharmaceutical cocrystals in the discovery and development of improved drugs[J]. Chemical Reviews, 2022, 122(13): 11514-11603. [3] KUMAR R, DALVI S V, SIRIL P F. Nanoparticle-based drugs and formulations: current status and emerging applications[J]. ACS Applied Nano Materials, 2020, 3(6): 4944-4961. [4] TING J M, PORTER W W 3rd, MECCA J M, et al. Advances in polymer design for enhancing oral drug solubility and delivery[J]. Bioconjugate Chemistry, 2018, 29(4): 939-952. [5] HÖRTER D, DRESSMAN J B. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract[J]. Advanced Drug Delivery Reviews, 2001, 46(1/2/3): 75-87. [6] MADDAR F M, ADOBES-VIDAL M, HUGHES L P, et al. Dissolution of bicalutamide single crystals in aqueous solution: significance of evolving topography in accelerating face-specific kinetics[J]. Crystal Growth & Design, 2017, 17(10): 5108-5116. [7] COOMBES S R, HUGHES L P, PHILLIPS A R, et al. Proton NMR: a new tool for understanding dissolution[J]. Analytical Chemistry, 2014, 86(5): 2474-2480. [8] GRAY V, KELLY G, XIA M, et al. The science of USP 1 and 2 dissolution: present challenges and future relevance[J]. Pharmaceutical Research, 2009, 26(6): 1289-1302. [9] SHEN Z Z, KERISIT S N, STACK A G, et al. Free-energy landscape of the dissolution of gibbsite at high pH[J]. The Journal of Physical Chemistry Letters, 2018, 9(7): 1809-1814. [10] SCHNEIDER J, REUTER K. Efficient calculation of microscopic dissolution rate constants: the aspirin-water interface[J]. The Journal of Physical Chemistry Letters, 2014, 5(21): 3859-3862. [11] JEAN C. The alkaline dissolution rate of calcite[J]. The Journal of Physical Chemistry Letters, 2016, 7(13): 2376-2380. [12] GUO M S, WANG K, QIAO N, et al. Insight into flufenamic acid cocrystal dissolution in the presence of a polymer in solution: from single crystal to powder dissolution[J]. Molecular Pharmaceutics, 2017, 14(12): 4583-4596. [13] DANESH A, CONNELL S D, DAVIES M C, et al. An in situ dissolution study of aspirin crystal planes (100) and (001) by atomic force microscopy[J]. Pharmaceutical Research, 2001, 18(3): 299-303. [14] PRASAD K V R, RISTIC R I, SHEEN D B, et al. Dissolution kinetics of paracetamol single crystals[J]. International Journal of Pharmaceutics, 2002, 238(1/2): 29-41. [15] NAJIB M, HAMMOND R B, MAHMUD T, et al. Impact of structural binding energies on dissolution rates for single faceted-crystals[J]. Crystal Growth & Design, 2021, 21(3): 1482-1495. [16] SONG S H, WANG L, XIE G Y, et al. Different dissolution molecular pathways of azilsartan crystals with different forms revealed by in situ atomic force microscopy[J]. The Journal of Physical Chemistry Letters, 2023, 14(36): 8191-8198. [17] POLONI L N, ZHONG X D, WARD M D, et al. Best practices for real-time in situ atomic force and chemical force microscopy of crystals[J]. Chemistry of Materials, 2017, 29(1): 331-345. [18] LI T L, MORRIS K R, PARK K. Influence of solvent and crystalline supramolecular structure on the formation of etching patterns on acetaminophen single crystals: a study with atomic force microscopy and computer simulation[J]. The Journal of Physical Chemistry B, 2000, 104(9): 2019-2032. [19] WEN H, LI T L, MORRIS K R, et al. How solvents affect acetaminophen etching pattern formation: interaction between solvent and acetaminophen at the solid/liquid interface[J]. The Journal of Physical Chemistry B, 2004, 108(7): 2270-2278. [20] WARZECHA M, GUO R, BHARDWAJ R M, et al. Direct observation of templated two-step nucleation mechanism during olanzapine hydrate formation[J]. Crystal Growth & Design, 2017, 17(12): 6382-6393. [21] IVASHCHENKO A A, MITKIN O D, JONES J C, et al. Non-rigid diarylmethyl analogs of baloxavir as cap-dependent endonuclease inhibitors of influenza viruses[J]. Journal of Medicinal Chemistry, 2020, 63(17): 9403-9420. [22] WANG H S, WANG L, XIE G Y, et al. Solvates and polymorphs of baloxavir marboxil: crystal structure and phase transformation study[J]. Crystal Growth & Design, 2024, 24(8): 3399-3409. [23] MACRAE C F, SOVAGO I, COTTRELL S J, et al. Mercury 4.0: from visualization to analysis, design and prediction[J]. Journal of Applied Crystallography, 2020, 53(1): 226-235. [24] ZHAI H, WANG L J, PUTNIS C V. Inhibition of spiral growth and dissolution at the brushite (010) interface by chondroitin 4-sulfate[J]. The Journal of Physical Chemistry B, 2019, 123(4): 845-851. [25] TANG R K, ORME C A, NANCOLLAS G H. Dissolution of crystallites: surface energetic control and size effects[J]. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry, 2004, 5(5): 688-696. [26] TANG R K, ORME C A, NANCOLLAS G H. A new understanding of demineralization: the dynamics of brushite dissolution[J]. The Journal of Physical Chemistry B, 2003, 107(38): 10653-10657. [27] PETRIK M, HARBRECHT B. Dissolution kinetics of nanocrystals[J]. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry, 2013, 14(11): 2403-2406. [28] TANG R K, WANG L J, ORME C A, et al. Dissolution at the nanoscale: self-preservation of biominerals[J]. Angewandte Chemie, 2004, 43(20): 2697-2701. [29] 唐睿康. 表面能与晶体生长/溶解动力学研究的新动向[J]. 化学进展, 2005, 17(2): 368-376. TANG R K. Progress in the studies of interfacial energy and kinetics of crystal growth/dissolution[J]. Progress in Chemistry, 2005, 17(2): 368-376 (in Chinese). [30] RASENACK N, HARTENHAUER H, MÜLLER B W. Microcrystals for dissolution rate enhancement of poorly water-soluble drugs[J]. International Journal of Pharmaceutics, 2003, 254(2): 137-145. [31] GÖKE K, LORENZ T, REPANAS A, et al. Novel strategies for the formulation and processing of poorly water-soluble drugs[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 126: 40-56. [32] SILVA A D A, SARCINELLI M A, DE CARVALHO PATRICIO B F, et al. Pharmaceutical development of micro and nanocrystals of a poorly water-soluble drug: dissolution rate enhancement of praziquantel[J]. Journal of Drug Delivery Science and Technology, 2023, 81: 104260. [33] LASAGA A C, LÜTTGE A. A model for crystal dissolution[J]. European Journal of Mineralogy, 2003, 15(4): 603-615. [34] LASAGA A C, LÜTTGE A. Variation of crystal dissolution rate based on a dissolution stepwave model[J]. Science, 2001, 291(5512): 2400-2404. [35] KURGANSKAYA I, ARVIDSON R S, FISCHER C, et al. Does the stepwave model predict mica dissolution kinetics?[J]. Geochimica et Cosmochimica Acta, 2012, 97: 120-130. [36] DOVE P M, HAN N Z, DE YOREO J J. Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(43): 15357-15362. |