[1] 张 彤, 李成宇, 池建义, 等. 稀土LED植物补光灯在设施农业上的应用[J]. 照明工程学报, 2018, 29(4): 22-24. ZHANG T, LI C Y, CHI J Y, et al. Application of rare earth LED lights for plant in protected agriculture[J]. China Illuminating Engineering Journal, 2018, 29(4): 22-24 (in Chinese). [2] 陈 晖, 陈善飞, 王正良. LED植物补光灯试制及其大棚草莓补光栽培效果分析[J]. 中国照明电器, 2019(4): 10-13. CHEN H, CHEN S F, WANG Z L. Trial production of LED plant supplementary light and analysis of its effect on strawberry supplementary light cultivation in greenhouse[J]. China Light & Lighting, 2019(4): 10-13 (in Chinese). [3] YEH N, CHUNG J P. High-brightness LEDs—energy efficient lighting sources and their potential in indoor plant cultivation[J]. Renewable and Sustainable Energy Reviews, 2009, 13(8): 2175-2180. [4] ZOU X K, WANG X J, ZHANG H R, et al. A highly efficient and suitable spectral profile Cr3+-doped garnet near-infrared emitting phosphor for regulating photomorphogenesis of plants[J]. Chemical Engineering Journal, 2022, 428: 132003. [5] HU J X, HUANG T H, ZHANG Y P, et al. Enhanced deep-red emission from Mn4+/Mg2+co-doped CaGdAlO4 phosphors for plant cultivation[J]. Dalton Transactions, 2019, 48(7): 2455-2466. [6] WU Y B, LV Y, RUAN K B, et al. A far-red emission (Ca, Sr)14Zn6Ga10O35∶Mn4+ phosphor for potential application in plant-growth LEDs[J]. Dalton Transactions, 2018, 47(43): 15574-15582. [7] XIE Y, GENG X, WANG Y, et al. An efficient far-red emission Sr2InSbO6∶Mn4+, M (M=Li+, Na+, and K+) phosphors for plant cultivation LEDs[J]. Journal of the American Ceramic Society, 2022, 105(2): 1300-1317. [8] PAN Z W, LU Y Y, LIU F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates[J]. Nature Materials, 2012, 11: 58-63. [9] ALLIX M, CHENU S, VÉRON E, et al. Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4[J]. Chemistry of Materials, 2013, 25(9): 1600-1606. [10] KANG F W, YANG X B, PENG M Y, et al. Red photoluminescence from Bi3+ and the influence of the oxygen-vacancy perturbation in ScVO4: a combined experimental and theoretical study[J]. The Journal of Physical Chemistry C, 2014, 118(14): 7515-7522. [11] XIA Z G, MA C G, MOLOKEEV M S, et al. Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1-xMgx)(Al1-xSi1+x)O7∶Eu2+ phosphor[J]. Journal of the American Chemical Society, 2015, 137(39): 12494-12497. [12] LI G G, LIN C C, CHEN W T, et al. Photoluminescence tuning via cation substitution in oxonitridosilicate phosphors: DFT calculations, different site occupations, and luminescence mechanisms[J]. Chemistry of Materials, 2014, 26(9): 2991-3001. [13] WANG B, LIN H, HUANG F, et al. Non-rare-earth BaMgAl10-2xO17∶xMn4+, xMg2+: a narrow-band red phosphor for use as a high-power warm w-LED[J]. Chemistry of Materials, 2016, 28(10): 3515-3524. [14] CI Z P, QUE M D, SHI Y R, et al. Enhanced photoluminescence and thermal properties of size mismatch in Sr2.97-x-yEu0.03MgxBaySiO5 for high-power white light-emitting diodes[J]. Inorganic Chemistry, 2014, 53(4): 2195-2199. [15] XIA Z G, LIU G K, WEN J G, et al. Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1-xSi2O6 solid solution[J]. Journal of the American Chemical Society, 2016, 138(4): 1158-1161. [16] BAI Q Y, ZHAO S L, GUAN L, et al. Design and control of the luminescence of Cr3+-doped phosphors in the near-infrared I region by fitting the crystal field[J]. Crystal Growth & Design, 2018, 18(5): 3178-3186. [17] MAHATA M K, KOPPE T, MONDAL T, et al. Incorporation of Zn2+ ions into BaTiO3∶Er3+/Yb3+ nanophosphor: an effective way to enhance upconversion, defect luminescence and temperature sensing[J]. Physical Chemistry Chemical Physics, 2015, 17(32): 20741-20753. [18] DORENBOS P. 5d-level energies of Ce3+ and the crystalline environment. I. Fluoride compounds[J]. Physical Review, 2000, 62: 15640-15649. [19] DORENBOS P. 5d-level energies of Ce3+ and the crystalline environment. II. Chloride, bromide, and iodide compounds[J]. Physical Review B, 2000, 62(23): 15650. [20] DORENBOS P. 5d-level energies of Ce3+ and the crystalline environment. III. Oxides containing ionic complexes[J]. Physical Review B, 2001, 64(12): 125117. [21] DORENBOS P. 5d-level energies of Ce3+ and the crystalline environment. IV. Aluminates and “simple” oxides[J]. Journal of Luminescence, 2002, 99(3): 283-299. [22] SHANG M M, FAN J, LIAN H Z, et al. A double substitution of Mg2+-Si4+/Ge4+ for Al(1)3+-Al(2)3+ in Ce3+-doped garnet phosphor for white LEDs[J]. Inorganic Chemistry, 2014, 53(14): 7748-7755. [23] JØRGENSEN C K. Modern aspects of ligand field theory[M]. Amsterdam: North-Holland Pub. Co., 1971. [24] RACK P D, HOLLOWAY P H. The structure, device physics, and material properties of thin film electroluminescent displays[J]. Materials Science and Engineering: R: Reports, 1998, 21(4): 171-219. [25] XIA Y F, CHEN J, LIU Y G, et al. Crystal structure evolution and luminescence properties of color tunable solid solution phosphors Ca2+xLa8-x(SiO4)6-x(PO4)xO2∶Eu2+[J]. Dalton Transactions, 2016, 45(3): 1007-1015. [26] DORENBOS P, ANDRIESSEN J, VAN EIJK C W E. 4fn-15d centroid shift in lanthanides and relation with anion polarizability, covalency, and cation electronegativity[J]. Journal of Solid State Chemistry, 2003, 171(1/2): 133-136. [27] RASHEED F, O'DONNELL K P, HENDERSON B, et al. Disorder and the optical spectroscopy of Cr3+-doped glasses. II. Glasses with high and low ligand fields[J]. Journal of Physics: Condensed Matter, 1991, 3(21): 3825-3840. [28] MORRISON C A. Host dependence of the rare-earth ion energy separation 4fN-4fN-1nl[J]. The Journal of Chemical Physics, 1980, 72(2): 1001-1002. [29] WANG T, XIANG Q C, XIA Z G, et al. Evolution of structure and photoluminescence by cation cosubstitution in Eu2+-doped (Ca1-xLix)(Al1-xSi1+x)N3 solid solutions[J]. Inorganic Chemistry, 2016, 55(6): 2929-2933. [30] WANG T, XIA Z G, XIANG Q C, et al. Relationship of 5d-level energies of Ce3+ with the structure and composition of nitride hosts[J]. Journal of Luminescence, 2015, 166: 106-110. [31] WAN M H, WANG Y H, WANG X S, et al. Long afterglow properties of Eu2+/Mn2+ doped Zn2GeO4[J]. Journal of Luminescence, 2014, 145: 914-918. [32] COOKE D W, BENNETT B L, FARNUM E H, et al. Thermally stimulated luminescence from X-irradiated porous silicon[J]. Applied Physics Letters, 1997, 70(26): 3594-3596. [33] FORSYTHE E W, MORTON D C, TANG C W, et al. Trap states of tris-8-(hydroxyquinoline) aluminum and naphthyl-substituted benzidine derivative using thermally stimulated luminescence[J]. Applied Physics Letters, 1998, 73(11): 1457. [34] RANDALL J, WILKINS M H. The phosphorescence of various solids[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1945, 184: 347-364. [35] WANG T, HU Y H, CHEN L, et al. Luminescent properties of a reddish orange long afterglow phosphor SrSnO3∶Sm3+[J]. Radiation Measurements, 2015, 73: 7-13. |