[1] ZHOU M L, JIANG X X, XIA M J, et al. A new congruent-melting double phosphate PbCd(PO3)4 with photocatalytic activity[J]. Journal of Alloys and Compounds, 2016, 689: 599-605. [2] HAUTIER G, JAIN A, MUELLER T, et al. Designing multielectron lithium-ion phosphate cathodes by mixing transition metals[J]. Chemistry of Materials, 2013, 25(10): 2064-2074. [3] HE Z Z, ZHANG W L, CHENG W D, et al. Long-range and short-range orderings in K4Fe4P5O20 with a natrolite-like framework[J]. Dalton Transactions, 2013, 42(16): 5860-5865. [4] YU H W, YOUNG J, WU H P, et al. Electronic, crystal chemistry, and nonlinear optical property relationships in the dugganite A3B3CD2O14 family[J]. Journal of the American Chemical Society, 2016, 138(14): 4984-4989. [5] PAN X B, WEN M, HE G J, et al. Syntheses, structures and properties of metal phosphates Pb2Mg(PO4)2, Pb4Zn8(PO4)8 and α-BaZn2(PO4)2[J]. Dalton Transactions, 2017, 46(46): 16034-16040. [6] LI L, WANG Y, LEI B H, et al. A new deep-ultraviolet transparent orthophosphate LiCs2PO4 with large second harmonic generation response[J]. Journal of the American Chemical Society, 2016, 138(29): 9101-9104. [7] ABUDOUREHEMAN M, HAN S J, LEI B H, et al. KPb2(PO3)5: a novel nonlinear optical lead polyphosphate with a short deep-UV cutoff edge[J]. Journal of Materials Chemistry C, 2016, 4(45): 10630-10637. [8] WANG Y, LIAN Z P, SU X, et al. Cs6RE2(PO4)4 (RE=Y and Gd): two new members of the alkali rare-earth double phosphates[J]. New Journal of Chemistry, 2015, 39(6): 4328-4333. [9] YU H W, YOUNG J, WU H P, et al. M4Mg4(P2O7)3 (M=K, Rb): structural engineering of pyrophosphates for nonlinear optical applications[J]. Chemistry of Materials, 2017, 29(4): 1845-1855. [10] LI L, HAN S J, LEI B H, et al. Three new phosphates with isolated P2O7 units: noncentrosymmetric Cs2Ba3(P2O7)2 and centrosymmetric Cs2BaP2O7 and LiCsBaP2O7[J]. Dalton Transactions, 2016, 45(9): 3936-3942. [11] SHEN Y G, ZENG S Y, XU Y Y, et al. KMg6(P2O7)2P3O10: a novel phosphate with two distinct anions[J]. Inorganic Chemistry Communications, 2016, 66: 83-86. [12] QIAN Z, WU H P, YU H W, et al. Synthesis, structure and characterization of three new Mg-containing phosphates with deep-UV cut-off edges[J]. New Journal of Chemistry, 2020, 44(17): 6771-6777. [13] SUN T Q, SHAN P, CHEN H, et al. Growth and properties of a noncentrosymmetric polyphosphate CsLa(PO3)4 crystal with deep-ultraviolet transparency[J]. CrystEngComm, 2014, 16(45): 10497-10504. [14] MASSE R, GRENIER J C, AVERBUCH-POUCHOT M T, et al. Étude cristallographique de trimétaphosphates hexagonaux du type MⅡNH4(PO3)3 (MⅡ=Zn, Co, Ca, Cd, Mg, Mn). étude d'un cycle P3O9 dans un sel de potassium isomorphe: MgK(PO3)3[J]. Bulletin de La Société Franaise de Minéralogie et de Cristallographie, 1967, 90(2): 158-161. [15] ETTIS H, NAÏLI H, MHIRI T. Synthesis and crystal structure of a new potassium-gadolinium cyclotetraphosphate, KGdP4O12[J]. Crystal Growth & Design, 2003, 3(4): 599-602. [16] CHUDINOVA N N, MURASHOVA E V, ILYUKHIN A B. Double cyclohexaphosphates of cesium and divalent metals[J]. Inorganic Materials, 2003, 39(12): 1298-1302. [17] JIA M H, CHENG X Y, WHANGBO M H, et al. Second harmonic generation responses of KH2PO4: importance of K and breaking down of kleinman symmetry[J]. RSC Advances, 2020, 10(44): 26479-26485. [18] ZHANG L S, XU M X, LIU B A, et al. New annealing method to improve KD2PO4 crystal quality: learning from high temperature phase transition[J]. CrystEngComm, 2015, 17(25): 4705-4711. [19] KHAN M I, UPADHYAY R, DHOOMA K, et al. Phase transition dielectric properties in order-disorder antiferroelectric NH4(H2PO4) (ADP) crystal[J]. Computational Condensed Matter, 2023, 34: e00780. [20] LIU S, SHAO L Y, ZHANG X J, et al. KTiOPO4 as a novel anode material for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2018, 754: 147-152. [21] LI Z Q, CHEN Y, ZHU P F, et al. Electronic structure and properties of RbTiOPO4∶ Ta crystals[J]. RSC Advances, 2017, 7(84): 53111-53116. [22] LÖKEN S, TREMEL W. K2AuPS4, Tl2AuPS4, K2AuAsS4, and KAu5P2S8: syntheses, structures, and properties of quaternary gold thiophosphate and thioarsenate compounds[J]. European Journal of Inorganic Chemistry, 1998, 1998(2): 283-289. [23] SCHOLZ T, SCHNEIDER C, EGER R, et al. Phase formation through synthetic control: polymorphism in the sodium-ion solid electrolyte Na4P2S6[J]. Journal of Materials Chemistry A, 2021, 9(13): 8692-8703. [24] HANKO J A, SAYETTAT J, JOBIC S, et al. A2CuP3S9 (A=K, Rb), Cs2Cu2P2S6, and K3CuP2S7: new phases from the dissolution of copper in molten polythiophosphate fluxes[J]. Chemistry of Materials, 1998, 10(10): 3040-3049. [25] HESS R F, ABNEY K D, BURRIS J L, et al. Synthesis and characterization of Six new quaternary actinide thiophosphate compounds: Cs8U5(P3S10)2(PS4)6, K10Th3(P2S7)4(PS4)2, and A5An(PS4)3, (A=K, Rb, Cs; An = U, Th)[J]. Inorganic Chemistry, 2001, 40(12): 2851-2859. [26] AITKEN J A, CANLAS C, WELIKY D P, et al. [P2S10]4-: a novel polythiophosphate anion containing a tetrasulfide fragment[J]. Inorganic Chemistry, 2001, 40(25): 6496-6498. [27] KANG L, ZHOU M L, YAO J Y, et al. Metal thiophosphates with good mid-infrared nonlinear optical performances: a first-principles prediction and analysis[J]. Journal of the American Chemical Society, 2015, 137(40): 13049-13059. [28] ZHOU M L, KANG L, YAO J Y, et al. Midinfrared nonlinear optical thiophosphates from LiZnPS4 to AgZnPS4: a combined experimental and theoretical study[J]. Inorganic Chemistry, 2016, 55(8): 3724-3726. [29] LI M Y, MA Z J, LI B X, et al. HgCuPS4: an exceptional infrared nonlinear optical material with defect diamond-like structure[J]. Chemistry of Materials, 2020, 32(10): 4331-4339. [30] TIWARI D, ALIBHAI D, CHERNS D, et al. Crystal and electronic structure of bismuth thiophosphate, BiPS4: an earth-abundant solar absorber[J]. Chemistry of Materials, 2020, 32(3): 1235-1242. [31] TAKEUCHI S, SUZUKI K, HIRAYAMA M, et al. Sodium superionic conduction in tetragonal Na3PS4[J]. Journal of Solid State Chemistry, 2018, 265: 353-358. [32] LIU Z C, FU W J, PAYZANT E A, et al. Anomalous high ionic conductivity of nanoporous β-Li3PS4[J]. Journal of the American Chemical Society, 2013, 135(3): 975-978. [33] 王云杰, 文杜林, 苏 欣. A3PO4(A=Li, Na, K, Rb, Cs)电子结构与光学性质的第一性原理研究[J]. 人工晶体学报, 2024, 53(1): 123-131. WANG Y J, WEN D L, SU X. First-principles study on the electronic structure and optical properties of A3PO4(A=Li, Na, K, Rb, Cs)[J]. Journal of Synthetic Crystals, 2024, 53(1): 123-131 (in Chinese). [34] HAN D, EBERT H. Identification of potential optoelectronic applications for metal thiophosphates[J]. ACS Applied Materials & Interfaces, 2021, 13(3): 3836-3844. [35] LIANG F, KANG L, LIN Z S, et al. Mid-infrared nonlinear optical materials based on metal chalcogenides: structure-property relationship[J]. Crystal Growth & Design, 2017, 17(4): 2254-2289. [36] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [37] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990, 41(11): 7892-7895. [38] 李正中. 固体理论[M]. 2版. 北京: 高等教育出版社, 2002. LI Z Z. Solid state theory [M]. Version 2. Beijing: Higher Education Press, 2002 (in Chinese). [39] LIU Q J, LIU Z T, FENG L P, et al. First-principles study of structural, elastic, electronic and optical properties of orthorhombic GaPO4[J]. Solid State Sciences, 2011, 13(5): 1076-1082. [40] YAN Y, YANG J H, DU J, et al. Cross-substitution promoted ultrawide bandgap up to 4.5 eV in a 2D semiconductor: gallium thiophosphate[J]. Advanced Materials, 2021, 33(22): 2008761. [41] LAVRENTYEV A A, GABRELIAN B V, NIKIFORORV I Y, et al. Electronic structure and chemical bonding of phosphorus-contained sulfides InPS4, TI3PS4, and Sn2P2S6[J]. Journal of Physics and Chemistry of Solids, 2003, 64(12): 2479-2486. [42] SHAM L J, SCHLÜTER M. Density-functional theory of the energy gap[J]. Physical Review Letters, 1983, 51(20): 1888-1891. [43] LI H L, LV Y B, LI J Z, et al. Experimental and first-principles studies of structural and optical properties of rare earth (RE=La, Er, Nd) doped ZnO[J]. Journal of Alloys and Compounds, 2014, 617: 102-107. [44] 张瑞亮, 卢胜尚, 肖清泉, 等. Lu掺杂AlN的电子结构和光学性质的第一性原理研究[J]. 无机化学学报, 2023, 39(1): 150-158. ZHANG R L, LU S S, XIAO Q Q, et al. First-principles study on electronic structure and optical properties of Lu-doped AlN[J]. Chinese Journal of Inorganic Chemistry, 2023, 39(1): 150-158 (in Chinese). [45] AVERSA C, SIPE J E. Nonlinear optical susceptibilities of semiconductors: results with a length-gauge analysis[J]. Physical Review B, 1995, 52(20): 14636-14645. [46] LIN J, LEE M H, LIU Z P, et al. Mechanism for linear and nonlinear optical effects in β-BaB2O4 crystals[J]. Physical Review B, 1999, 60(19): 13380. [47] AMBROSCH-DRAXL C, SOFO J O. Linear optical properties of solids within the full-potential linearized augmented planewave method[J]. Computer Physics Communications, 2006, 175(1): 1-14. [48] BAI P, LI X H, YANG N, et al. Broadband and photovoltaic THz/IR response in the GaAs-based ratchet photodetector[J]. Science Advances, 2022, 8(21): eabn2031. [49] WANG Y J, YANG T H, CAI W L, et al. Defect passivation refinement in perovskite photovoltaics: achieving efficiency over 45% under low-light and low-temperature dual extreme conditions[J]. Advanced Materials, 2024, 36(23): 2312014. [50] RADZWAN A, AHMED R, SHAARI A, et al. First-principles study of electronic and optical properties of antimony sulphide thin film[J]. Optik, 2020, 202: 163631. [51] HIRANO S I, KIM P C. Physical properties of hydrothermally grown gallium orthophosphate single crystals[J]. Journal of Materials Science, 1990, 25(11): 4772-4775. [52] LAVRENTYEV A A, GABRELIAN B V, KULAGIN B B, et al. The influence of pressure on the birefringence in semiconductor compounds ZnS, CuGaS2, and InPS4[J]. Physica Status Solidi (b), 2007, 244(1): 315-320. [53] FRISCH M. gaussian 09, Revision d. 01, Gaussian[J]. Inc, Wallingford CT, 2009. [54] MANZETTI S, LU T. Alternant conjugated oligomers with tunable and narrow HOMO-LUMO gaps as sustainable nanowires[J]. RSC Advances, 2013, 3(48): 25881-25890. [55] ZHANG B B, SHI G Q, YANG Z H, et al. Fluorooxoborates: beryllium-free deep-ultraviolet nonlinear optical materials without layered growth[J]. Angewandte Chemie International Edition, 2017, 56(14): 3916-3919. [56] KOKALJ A. On the alleged importance of the molecular electron-donating ability and the HOMO-LUMO gap in corrosion inhibition studies[J]. Corrosion Science, 2021, 180: 109016. [57] VOIGT W. Lehrbuch der Kristallphysik[J]. Taubner, Leipzig, 1928. [58] REUSS A. Berechnung der Fließgrenze von mischkristallen auf grund der Plastizitäsbedingung für einkristalle[J]. ZAMM-Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik und Mechanik, 1929, 9(1): 49-58. [59] HUNTINGTON H B. The elastic constants of crystals[M]//Solid State Physics. Amsterdam: Elsevier, 1958: 213-351. [60] RANGANATHAN S I, OSTOJA-STARZEWSKI M. Universal elastic anisotropy index[J]. Physical Review Letters, 2008, 101(5): 055504. [61] LIU Y H, CHONG X Y, JIANG Y H, et al. Mechanical properties and electronic structures of Fe-Al intermetallic[J]. Physica B: Condensed Matter, 2017, 506: 1-11. |