
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (10): 1849-1857.DOI: 10.16553/j.cnki.issn1000-985x.2025.0172
林可1, 张雅馨1(
), 吴闻杰1, 李琳1, 林长浪2, 曾黄军2, 聂海宇2, 李志强2, 张戈2, 李真1,3,4, 张沛雄1,3,4(
), 陈玮冬2, 陈振强1,3,4
收稿日期:2025-08-01
出版日期:2025-10-20
发布日期:2025-11-11
通信作者:
张沛雄,博士,教授。E-mail:pxzhang@jnu.edu.cn
作者简介:张雅馨(2001—),女,湖北省人,硕士研究生。E-mail:zhangyaxin0106@163.com基金资助:
LIN Ke1, ZHANG Yaxin1(
), WU Wenjie1, LI Lin1, LIN Changlang2, ZENG Huangjun2, NIE Haiyu2, LI Zhiqiang2, ZHANG Ge2, LI Zhen1,3,4, ZHANG Peixiong1,3,4(
), CHEN Weidong2, CHEN Zhenqiang1,3,4
Received:2025-08-01
Online:2025-10-20
Published:2025-11-11
摘要: 超短脉冲激光因在精密加工、生物医学等领域广泛的应用而备受关注,其发展高度依赖于具有宽带增益光谱的激光增益介质。相比激光玻璃,掺稀土离子的无序激光晶体兼具宽带增益光谱与优异的稳定性,是产生超短脉冲激光的理想增益介质。然而,混晶组分、晶体结构及其对发射带宽及中心配体对称性间的构效关系仍缺乏系统认知。本文对多个掺镱混晶体系,包括Yb∶Y2(Ca,Mg)3(SiO4)3、Yb∶Ca(Y,Gd)AlO4(Yb∶CALYGO)及Yb∶(Gd,Y)AlO3(Yb∶GYAP),开展了系统分析,揭示了混晶组分比例、结构无序度与Yb3+增益带宽之间的内在规律。在此理论指导下,成功生长了Yb∶CALYGO和Yb∶GYAP单晶,并分别实现了25和23 fs的超短脉冲激光输出。本研究为超快无序激光晶体的理性设计与其在超快激光应用中的性能优化提供了关键理论支撑和有效实现途径。
中图分类号:
林可, 张雅馨, 吴闻杰, 李琳, 林长浪, 曾黄军, 聂海宇, 李志强, 张戈, 李真, 张沛雄, 陈玮冬, 陈振强. 掺镱混晶的光谱增益带宽调控与激光性能研究[J]. 人工晶体学报, 2025, 54(10): 1849-1857.
LIN Ke, ZHANG Yaxin, WU Wenjie, LI Lin, LIN Changlang, ZENG Huangjun, NIE Haiyu, LI Zhiqiang, ZHANG Ge, LI Zhen, ZHANG Peixiong, CHEN Weidong, CHEN Zhenqiang. Spectroscopic Gain Bandwidth Modulation and Laser Performance of Ytterbium-Doped Mixed Crystals[J]. Journal of Synthetic Crystals, 2025, 54(10): 1849-1857.
图4 室温下Yb3+在CALYGO晶体中的偏振吸收和发射特性:(a)吸收截面(σabs);(b)荧光发射光谱;(c)受激发射截面(σSE)。插图为Yb∶CALYGO晶体照片[27]
Fig.4 RT polarized absorption and emission properties of Yb3+ in CALYGO crystals: (a) absorption cross-section (σabs); (b) luminescence spectra; (c) stimulated-emission cross-sections (σSE). Inset is a photograph of Yb∶CALYGO crystal [27]
图5 Yb∶CALYGO晶体SESAM锁模激光器:(a)激光光谱(TOC=2.5%);(b)自相关波形(TOC=2.5%);(c)激光光谱(TOC=1.6%);(d)自相关波形(TOC=1.6%)[27]
Fig.5 SESAM mode-locked Yb∶CALYGO laser: (a) laser spectrum (TOC=2.5%); (b) autocorrelation trace (TOC=2.5%); (c) laser spectrum (TOC=1.6%); (d) autocorrelation trace (TOC=1.6%)[27]
图6 Yb∶CALYGO晶体KLM激光器:(a)激光光谱(TOC=1.6%);(b)自相关波形(TOC=1.6%);(c)激光光谱(TOC=4%);(d)自相关波形(TOC=4%)[28]
Fig.6 KLM Yb∶CALYGO laser: (a) laser spectrum (TOC=1.6%); (b) autocorrelation trace (TOC=1.6%); (c) laser spectrum (TOC=4%); (d) autocorrelation trace (TOC=4%)[28]
图7 (a)Yb∶GYAP晶体照片;SESAM锁模激光器:(b)激光光谱(TOC=1.6%);(c)自相关波形(TOC=1.6%)[30]
Fig.7 (a) A photograph of Yb∶GYAP crystal; SESAM mode-locked laser: (b) laser spectrum (TOC=1.6%); (c) autocorrelation trace (TOC=1.6%)[30]
图8 Yb∶GYAP KLM激光器:(a)激光光谱(TOC=2.5%);(b)自相关波形(TOC=2.5%);(c)激光光谱(TOC=1.6%);(d)自相关波形(TOC=1.6%)。(b)和(d)中红色曲线为强度自相关分布[31]
Fig.8 KLM Yb∶GYAP laser: (a) laser spectrum (TOC=2.5%); (b) autocorrelation trace (TOC=2.5%); (c) laser spectrum (TOC=1.6%); (d) autocorrelation trace (TOC=1.6%). The red curve in (b) and (d) corresponds to the intensity autocorrelation profile[31]
| Gain medium | Pump source | Mode-locking method | Output wavelength/nm | Repetition frequency/MHz | Pulse width/fs | Absorbed pump power/W | Average output power/mW | Peak power/kW | Reference |
|---|---|---|---|---|---|---|---|---|---|
| Yb∶CALYGO | 976 nm InGaAs LD | KLM | 1 080 | 65.6 | 25 | 0.836 | 47 | 25.2 | [ |
| Yb∶CALYGO | 976 nm InGaAs LD | SESAM | 1 059.8 | 65.95 | 35 | 0.845 | 51 | 19.4 | [ |
| Yb∶GYAP | 979 nm fiber laser | KLM | 1 067 | 84.6 | 32 | 3.75 | 328 | 106.6 | [ |
| Yb∶GYAP | 976 nm InGaAs LD | KLM | 1 082.3 | 67.25 | 23 | 1.02 | 45 | 25.6 | [ |
| Yb∶GYAP | 976 nm InGaAs LD | SESAM | 1 052.3 | 70.8 | 43 | 0.985 | 103 | 29.8 | [ |
表1 基于Yb∶CALYGO和Yb∶GYAP晶体不同锁模方式的激光性能
Table 1 Different mode-locking performance in Yb∶CALYGO and Yb∶GYAP crystals
| Gain medium | Pump source | Mode-locking method | Output wavelength/nm | Repetition frequency/MHz | Pulse width/fs | Absorbed pump power/W | Average output power/mW | Peak power/kW | Reference |
|---|---|---|---|---|---|---|---|---|---|
| Yb∶CALYGO | 976 nm InGaAs LD | KLM | 1 080 | 65.6 | 25 | 0.836 | 47 | 25.2 | [ |
| Yb∶CALYGO | 976 nm InGaAs LD | SESAM | 1 059.8 | 65.95 | 35 | 0.845 | 51 | 19.4 | [ |
| Yb∶GYAP | 979 nm fiber laser | KLM | 1 067 | 84.6 | 32 | 3.75 | 328 | 106.6 | [ |
| Yb∶GYAP | 976 nm InGaAs LD | KLM | 1 082.3 | 67.25 | 23 | 1.02 | 45 | 25.6 | [ |
| Yb∶GYAP | 976 nm InGaAs LD | SESAM | 1 052.3 | 70.8 | 43 | 0.985 | 103 | 29.8 | [ |
| [1] |
JEONG Y, SAHU J K, PAYNE D N, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Optics Express, 2004, 12(25): 6088-6092.
PMID |
| [2] | HE D B, KANG S, ZHANG L Y, et al. Research and development of new neodymium laser glasses[J]. High Power Laser Science and Engineering, 2017, 5: e1. |
| [3] |
HU L L, HE D B, CHEN H Y, et al. Research and development of neodymium phosphate laser glass for high power laser application[J]. Optical Materials, 2017, 63: 213-220.
DOI URL |
| [4] | 李 琳, 张沛雄, 谭俊成, 等. Er掺杂PbF2晶体的局域团簇结构与光谱性能研究[J]. 人工晶体学报, 2024, 53(7): 1112-1120. |
| LI L, ZHANG P X, TAN J C, et al. Investigation of localized cluster structure and spectral properties of Er-doped PbF2 crystals[J]. Journal of Synthetic Crystals, 2024, 53(7): 1112-1120 (in Chinese). | |
| [5] | 李 琳, 谭慧瑜, 郑为比, 等. Er掺杂CGA晶体的生长及浓度优化研究[J]. 人工晶体学报, 2023, 52(7): 1325-1334. |
| LI L, TAN H Y, ZHENG W B, et al. Growth and concentration optimization of Er-doped CGA crystals[J]. Journal of Synthetic Crystals, 2023, 52(7): 1325-1334 (in Chinese). | |
| [6] |
LIN H F, LIN Z L, CHEN Y J, et al. Continuous-wave and SESAM mode-locked operation of the Yb∶Bi4Si3O12 laser[J]. Optics Express, 2021, 29(1): 105-110.
DOI URL |
| [7] |
WANG Y R, SU X C, WILLEMSEN T, et al. Ultrabroadband 12 fs mode-locked Yb∶CALGO laser oscillator[J]. Optics Letters, 2025, 50(15): 4830-4833.
DOI URL |
| [8] |
ZENG H J, LIN Z L, PETROV V, et al. 56-fs diode-pumped SESAM mode-locked Yb∶YAl3(BO3)4 laser[J]. Optics Express, 2023, 31(6): 10617-10624.
DOI URL |
| [9] |
ZENG H J, LIN Z L, LIN H F, et al. Sub-40-fs diode-pumped ytterbium-doped mixed rare-earth calcium oxoborate laser[J]. Optics Express, 2025, 33(8): 17965.
DOI URL |
| [10] |
LIN Z L, LOIKO P, ZENG H J, et al. Kerr-lens mode-locking of an Yb∶CLNGG laser[J]. Optics Express, 2023, 31(5): 8575-8585.
DOI URL |
| [11] |
GUO J, LI S M, ZHAO C C, et al. SESAM mode-locked Yb∶GdScO3 laser[J]. Optics Express, 2024, 32(5): 7865-7872.
DOI URL |
| [12] |
MA J, YANG F, GAO W L, et al. Sub-five-optical-cycle pulse generation from a Kerr-lens mode-locked Yb∶CaYAlO4 laser[J]. Optics Letters, 2021, 46(10): 2328-2331.
DOI URL |
| [13] | 王帅坤, 仲 莉, 林 楠, 等. SESAM锁模全保偏皮秒脉冲光纤激光器输出特性[J]. 发光学报, 2024, 45(1): 149-156. |
|
WANG S K, ZHONG L, LIN N, et al. Output characteristics of SESAM mode-locked all-polarization-maintaining (PM) picosecond fiber laser[J]. Chinese Journal of Luminescence, 2024, 45(1): 149-156 (in Chinese).
DOI URL |
|
| [14] |
KOSTIĆ S, LAZAREVIĆ Z Ž, RADOJEVIĆ V, et al. Study of structural and optical properties of YAG and Nd∶YAG single crystals[J]. Materials Research Bulletin, 2015, 63: 80-87.
DOI URL |
| [15] |
KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186.
DOI URL |
| [16] |
PERDEW J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas[J]. Physical Review B, 1986, 33(12): 8822-8824.
DOI PMID |
| [17] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
DOI PMID |
| [18] |
BYRD R H, NOCEDAL J, SCHNABEL R B. Representations of quasi-Newton matrices and their use in limited memory methods[J]. Mathematical Programming, 1994, 63(1): 129-156.
DOI URL |
| [19] |
MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192.
DOI URL |
| [20] |
PFROMMER B G, CÔTÉ M, LOUIE S G, et al. Relaxation of crystals with the quasi-Newton method[J]. Journal of Computational Physics, 1997, 131(1): 233-240.
DOI URL |
| [21] |
FRANCIS G P, PAYNE M C. Finite basis set corrections to total energy pseudopotential calculations[J]. Journal of Physics Condensed Matter, 1990, 2(19): 4395-4404.
DOI URL |
| [22] |
MOMMA K, IZUMI F. VESTA: a three-dimensional visualization system for electronic and structural analysis[J]. Journal of Applied Crystallography, 2008, 41(3): 653-658.
DOI URL |
| [23] |
GRAŽULIS S, DAŠKEVIČ A, MERKYS A, et al. Crystallography open database (COD): an open-access collection of crystal structures and platform for world-wide collaboration[J]. Nucleic Acids Research, 2012, 40(Database issue): D420-D427.
DOI URL |
| [24] |
GRAŽULIS S, CHATEIGNER D, DOWNS R T, et al. Crystallography open database-an open-access collection of crystal structures[J]. Journal of Applied Crystallography, 2009, 42(4): 726-729.
DOI URL |
| [25] |
BERA S, OHODNICKI P, COLLINS K, et al. Dopant segregation in YAG single crystal fibers grown by the laser heated pedestal growth technique[J]. Journal of Crystal Growth, 2020, 547: 125801.
DOI URL |
| [26] | 李兴旺, 杨国利, 韩剑锋, 等. 提拉法生长直径10英寸优质Yb∶YAG激光晶体[J]. 人工晶体学报, 2023, 52(4): 547-549. |
| LI X W, YANG G L, HAN J F, et al. Growth of high quality?10 inch Yb∶YAG laser crystal by Czochralski method[J]. Journal of Synthetic Crystals, 2023, 52(4): 547-549 (in Chinese). | |
| [27] |
ZHANG P X, WU W J, LIN Z L, et al. Growth, spectroscopy and SESAM mode-locking of a “mixed” Yb∶Ca(Gd, Y)AlO4 disordered crystal[J]. Optics Express, 2024, 32(3): 3221.
DOI URL |
| [28] |
LI Z Q, LIN Z L, ZENG H J, et al. Diode-pumped Kerr-lens mode-locked ytterbium-doped compositional mixed calcium aluminate laser[J]. Optics Express, 2024, 32(23): 40507-40513.
DOI URL |
| [29] | 谭慧瑜, 汪 瑞, 张沛雄, 等. 钆镱共掺杂铝酸钇晶体的生长及性能研究[J]. 人工晶体学报, 2021, 50(11): 2013-2018. |
| TAN H Y, WANG R, ZHANG P X, et al. Growth and properties of Gd3+/Yb3+ co-doped yttrium aluminate crystals[J]. Journal of Synthetic Crystals, 2021, 50(11): 2013-2018 (in Chinese). | |
| [30] |
XUE W Z, LIN Z L, ZENG H J, et al. Diode-pumped SESAM mode-locked Yb∶(Y, Gd)AlO3 laser[J]. Optics Express, 2022, 30(7): 11825-11832.
DOI URL |
| [31] |
NIE H-Y, ZHANG P X, LOIKO P, et al. Kerr-lens mode-locked, diode-pumped Yb, Gd∶YAP laser generating 23 fs pulses[J]. Optics Express, 2025, 33(5): 11793.
DOI URL |
| [32] |
LIN Z L, XUE W Z, ZENG H J, et al. Kerr-lens mode-locked ytterbium-activated orthoaluminate laser[J]. Optics Letters, 2022, 47(12): 3027-3030.
DOI URL |
| [1] | 任龙军, 柴什虎, 王付远, 姜萍. 具有超高载流子迁移率单层C2B6的预测[J]. 人工晶体学报, 2025, 54(5): 850-856. |
| [2] | 张家琪, 林雪玲, 田文虎, 马文杰, 张秀, 马小伟, 朱巧萍, 郝睿, 潘凤春. 应变对Si掺杂A-TiO2光学性质影响的第一性原理研究[J]. 人工晶体学报, 2025, 54(4): 617-628. |
| [3] | 闵月淇, 谢文钦, 谢亮, 安康. Pd掺杂调控CsPbX3(X=Cl,Br,I)光电性能研究[J]. 人工晶体学报, 2025, 54(4): 605-616. |
| [4] | 焦思慧, 吴红萍, 俞洪伟. CsBa2ScB8O16:首例结构中同时含有零维[B3O6]基元和一维B—O链的稀土硼酸盐[J]. 人工晶体学报, 2024, 53(9): 1550-1559. |
| [5] | 王蕾蕾, 尹振华, 张蕴可, 刘磊, 陈名. 适用于太阳能电池的新型无铅四元硫碘化物优异光电性能的第一性原理研究[J]. 人工晶体学报, 2024, 53(5): 803-809. |
| [6] | 郝敬林, 邓丽芬, 王凯悦, 宋惠, 江南, 西村一仁. 高温高压合成掺杂金刚石研究进展[J]. 人工晶体学报, 2024, 53(2): 194-209. |
| [7] | 张盼, 庞国旺, 尹伟, 马亚斌, 张钧洲, 杨慧慧, 秦彦军. 高压下4H-SiC结构、电子和光学性质的理论研究[J]. 人工晶体学报, 2024, 53(12): 2104-2112. |
| [8] | 周春起, 张会, 礼楷雨. Janus二维双层MoSSe/WSSe异质结光电性质的第一性原理研究[J]. 人工晶体学报, 2023, 52(9): 1668-1673. |
| [9] | 黄田, 马赛, 刘宵宇, 黎迎, 武红, 徐永兵, 魏陆军, 李峰, 普勇. 具有大磁各向异性和高居里温度的二维笼目磁性材料Fe3As[J]. 人工晶体学报, 2023, 52(8): 1413-1421. |
| [10] | 张万贺, 胡建英, 周涛, 吕怡婷, 王克良. 镁和铝离子电池负极材料Nb2N的第一性原理研究[J]. 人工晶体学报, 2023, 52(8): 1451-1457. |
| [11] | 侯茵茵,马良财. Li原子和Ca原子修饰VO2单层储氢性能的第一性原理研究[J]. 人工晶体学报, 2023, 52(11): 2014-2023. |
| [12] | 刘涵, 高蕾, 薛宇飞, 叶宇娇, 曾春华. 新型二维铜族硫族化合物的研究进展[J]. 人工晶体学报, 2022, 51(8): 1493-1510. |
| [13] | 简小刚, 彭薪颖, 杨天, 胡吉博, 尹明睿. Ti、V、Ni、Mo对CVD金刚石涂层形核影响[J]. 人工晶体学报, 2022, 51(5): 933-940. |
| [14] | 赵婷婷. 层状graphene/WSSe范德瓦耳斯异质结电子特性和界面接触的理论研究[J]. 人工晶体学报, 2022, 51(12): 2080-2089. |
| [15] | 吴孔平, 张冷, 王丹蓓, 肖柳, 陈泽龙, 张靖晨, 张鹏展, 刘飞, 汤琨, 叶建东, 顾书林. 金刚石(001)面在Cu多种覆盖度下的稳定构型与电子特性[J]. 人工晶体学报, 2021, 50(9): 1640-1647. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS