欢迎访问《人工晶体学报》官方网站,今天是 2025年6月10日 星期二 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (4): 605-616.DOI: 10.16553/j.cnki.issn1000-985x.2024.0254

• 研究论文 • 上一篇    下一篇

Pd掺杂调控CsPbX3(X=Cl,Br,I)光电性能研究

闵月淇1, 谢文钦1, 谢亮2, 安康1,3   

  1. 1.北方工业大学机械与材料工程学院,北京 100144;
    2.北方工业大学理学院,北京 100144;
    3.北京科技大学新材料技术研究院,北京 100083
  • 收稿日期:2024-10-26 出版日期:2025-04-15 发布日期:2025-04-28
  • 通信作者: 谢 亮,博士,副教授。E-mail:xieliang@ncut.edu.cn
  • 作者简介:闵月淇(2000—),男,山东省人,硕士研究生。E-mail:924257092@qq.com
  • 基金资助:
    国家自然科学基金(11704009)

Optoelectronic Properties of CsPbX3 (X=Cl, Br, I) Regulated by Pd Doping

MIN Yueqi1, XIE Wenqin1, XIE Liang2, AN Kang1,3   

  1. 1. School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China;
    2. Department of Physics, North China University of Technology, Beijing 100144, China;
    3. Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2024-10-26 Online:2025-04-15 Published:2025-04-28

摘要: CsPbX3中的毒性元素Pb限制了其在太阳能电池领域的广泛应用,采用Pd金属元素掺杂替代Pb是降低毒性的一种有效方案,同时还可调控其光电性能。本工作采用第一性原理计算方法,对能带结构、态密度、电子局域函数进行计算,分析了Pd掺杂对CsPbX3(X=Cl,Br,I) 结构和电子性质的影响。结果表明,Pd掺杂能形成稳定的结构,带隙值随Pd浓度增加而降低,特别是<100>取向的掺杂对带隙值的降低最明显。Pd与Pb和X的d-p杂化增强了电子局域化,形成局部势阱,提升了材料的光吸收和光电转换效率,尤其在600 nm以上可见光区域。本工作对于新型钙钛矿太阳能电池材料的设计与制备,具有一定的理论指导意义。

关键词: Pd掺杂, CsPbX3, 第一性原理计算, 光电性能, 电子结构, 钙钛矿, 太阳能电池

Abstract: The toxic element Pb in CsPbX3 limits its widespread application in the field of solar cells. Doping with the metal element Pd to replace Pb is an effective approach to reduce its toxicity while also modulating its optoelectronic properties. This study employs first-principles computational methods to analyze the effects of Pd doping on CsPbX3 (X=Cl, Br, I) in terms of crystal structure, band structure, density of states, and electron localization functions at varying concentrations and orientations. The findings reveal that when Pd is doped into the orthorhombic CsPbX3 (X=Cl, Br, I), a negative formation energy is achieved, indicating the stability of the structure at room temperature. With the incorporation of Pd, the band edge flattens, the effective mass of charge carriers increases, and the bandgap value decreases. The doping in the <100> orientation has the most significant impact on reducing the bandgap value, and as the concentration of Pd doping increases, the bandgap value of the system continues to decrease. This is attributed to the increased electron localization due to the d-p hybridization effect between Pd and Pb and X. The stronger Pd-X and Pd-Pb bonding at the microscopic level forms local potential wells, enhancing the material's light absorption capacity and photovoltaic conversion efficiency. This results in a significant increase in the absorption coefficient for visible light with wavelengths greater than 600 nm, expanding the visible light absorption range of the doped material. Additionally, Pd doping reduces the Pb content, thereby decreasing the material's toxicity. These findings are instrumental for the design and fabrication of novel perovskite solar cells.

Key words: Pd doping, CsPbX3, first-principles calculation, optoelectronic property, electronic structure, perovskite, solar cell

中图分类号: