
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (11): 1881-1892.DOI: 10.16553/j.cnki.issn1000-985x.2025.0122
收稿日期:2025-06-05
出版日期:2025-11-20
发布日期:2025-12-11
通信作者:
伊魁宇,博士,副教授。E-mail:yikuiyu@sut.edu.cn
作者简介:李柯华(2001—),女,河南省人,硕士研究生。E-mail:likehua77@163.com
基金资助:
LI Kehua1(
), YI Kuiyu1(
), SHI Hongwei2, KANG Xiaoqi3
Received:2025-06-05
Online:2025-11-20
Published:2025-12-11
摘要: 抗生素在医疗、农业及工业领域至关重要,但对人类健康及自然界的生态平衡构成了潜在的威胁。传统检测技术虽有效,但成本高且操作复杂。因此,开发高效灵敏的检测技术迫在眉睫。金属有机框架材料(MOFs)因多孔结构、可调节化学组成和荧光性能,在抗生素荧光检测中潜力巨大。本文以MOFs荧光检测抗生素中的光致电子转移(PET)、荧光共振能量转移(FRET)、内滤效应(IFE)等机制为切入点,通过荧光猝灭、荧光增强及比率荧光这三种检测策略,系统梳理了近年来基于MOFs的荧光传感器在抗生素检测领域的最新研究进展。具体探讨了MOFs及其主客体复合材料在检测β-内酰胺类、大环内酯类、四环素类、氨基糖苷类、喹诺酮类、磺胺类、酰胺醇类,以及磷酸化多糖类等多种抗生素的表现。此外,通过对现有研究成果的总结和分析,为该领域后续研究指明了方向,包括进一步优化MOFs的结构和性能、结合现代分析技术等,从而为推动MOFs荧光传感器在抗生素检测领域的实际应用提供了坚实基础。
中图分类号:
李柯华, 伊魁宇, 史洪微, 康晓琦. 金属有机框架材料荧光检测抗生素的研究进展[J]. 人工晶体学报, 2025, 54(11): 1881-1892.
LI Kehua, YI Kuiyu, SHI Hongwei, KANG Xiaoqi. Research Progress on Fluorescence Detection of Antibiotics by Metal-Organic Frameworks[J]. Journal of Synthetic Crystals, 2025, 54(11): 1881-1892.
| Synthetic substance | MOF type | Objective | Linear range | LOD | Sample | Reference |
|---|---|---|---|---|---|---|
| Tb-MOF | Pure MOF | CEF | 0~40 µmol/L | 0.179 µmol/L | Water | [ |
| FCZE | Composite MOF | CTC | 0.5~200 nmol/L | 0.43 nmol/L | — | [ |
| [Eu(L)1/2H2O] n | Pure MOF | GM | 0~140 µmol/L | 0.009 1 nmol/L | — | [ |
| {Zn(bib)·(SO4)·(H2O)} n | Pure MOF | NOR | 0~10 µmol/L | 7.04 µmol/L | Water | [ |
| [Cd4(MTPTC)2(DMF)4]·5DMF·2H2O | Pure MOF | SDZ | 0~40 µmol/L | 0.070 µmol/L | — | [ |
| Eu-MOF | Pure MOF | CHL | 5~150 µmol/L | 3.16 µmol/L | Milk | [ |
表1 金属有机框架基合成材料对不同目标物荧光猝灭型的检测性能参数
Table 1 Detection performance parameter of fluorescence quenching type of metal-organic framework-based synthetic materials for different target substances
| Synthetic substance | MOF type | Objective | Linear range | LOD | Sample | Reference |
|---|---|---|---|---|---|---|
| Tb-MOF | Pure MOF | CEF | 0~40 µmol/L | 0.179 µmol/L | Water | [ |
| FCZE | Composite MOF | CTC | 0.5~200 nmol/L | 0.43 nmol/L | — | [ |
| [Eu(L)1/2H2O] n | Pure MOF | GM | 0~140 µmol/L | 0.009 1 nmol/L | — | [ |
| {Zn(bib)·(SO4)·(H2O)} n | Pure MOF | NOR | 0~10 µmol/L | 7.04 µmol/L | Water | [ |
| [Cd4(MTPTC)2(DMF)4]·5DMF·2H2O | Pure MOF | SDZ | 0~40 µmol/L | 0.070 µmol/L | — | [ |
| Eu-MOF | Pure MOF | CHL | 5~150 µmol/L | 3.16 µmol/L | Milk | [ |
图5 智能手机辅助Zn-TCPE试纸在不同TOB浓度下的荧光特征分析[47]。(a)一部装载了颜色识别应用的智能手机;(b)TOB检测的校准曲线。插图展示了Zn-TCPE制成的试纸在365 nm紫外灯照射下,随着TOB浓度增加(从左至右:5、10、20、30及40 μmol/L)所呈现的荧光彩色照片
Fig.5 Analysis of fluorescence characteristics of Zn-TCPE test strips assisted by smart phones under different TOB concentrations[47]. (a) A smartphone with a color recognition App loaded; (b) a calibration curve for TOB detection. The illustration shows fluorescence color photographs of test papers made by Zn-TCPE with increasing TOB concentrations under 365 nm UV lamp light (from left to right: 5, 10, 20, 30, and 40 μmol/L)
| Synthetic substance | MOF type | Objective | Linear range | LOD | Sample | Reference |
|---|---|---|---|---|---|---|
| Cd-MOF[Cd(L)0.5(1,2-bimb)] | Pure MOF | AMB | 0~200 µmol/L | 2.39 µmol/L | — | [ |
| Zn-MOF | Composite MOF | OTC | 0.02~13 µmol/L | 0.017 nmol/L | Water | [ |
| Zn-TCPE | Composite MOF | TOB | 79.3~10 000 nmol/L | 23.8 nmol/L | River water | [ |
| Cd-MOF | Pure MOF | ENR | 0~45 µmol/L | 0.025 µmol/L | Water | [ |
| [Ln2(tcptp)(btca)(H2O) m ] n, Ln=Tb3+ | Pure MOF | LVX | 0~20 µmol/L | 0.256 mg/kg | — | [ |
| Cu-MOF | Pure MOF | FFC | 1~50 µmol/L | 2.93 µmol/L | Chicken | [ |
表2 金属有机框架基合成材料对不同目标物荧光增强型的检测性能参数
Table 2 Performance parameter of fluorescence enhancement detection of metal-organic framework-based synthetic materials for different target substances
| Synthetic substance | MOF type | Objective | Linear range | LOD | Sample | Reference |
|---|---|---|---|---|---|---|
| Cd-MOF[Cd(L)0.5(1,2-bimb)] | Pure MOF | AMB | 0~200 µmol/L | 2.39 µmol/L | — | [ |
| Zn-MOF | Composite MOF | OTC | 0.02~13 µmol/L | 0.017 nmol/L | Water | [ |
| Zn-TCPE | Composite MOF | TOB | 79.3~10 000 nmol/L | 23.8 nmol/L | River water | [ |
| Cd-MOF | Pure MOF | ENR | 0~45 µmol/L | 0.025 µmol/L | Water | [ |
| [Ln2(tcptp)(btca)(H2O) m ] n, Ln=Tb3+ | Pure MOF | LVX | 0~20 µmol/L | 0.256 mg/kg | — | [ |
| Cu-MOF | Pure MOF | FFC | 1~50 µmol/L | 2.93 µmol/L | Chicken | [ |
图8 基于CDs@HZIF-8的比率荧光探针制备及应用示意图,用于四环素类抗生素检测[54]
Fig.8 Schematic diagram of the preparation and application of ratiometric fuorescent probe based on CDs@HZIF-8 for the detection of tetracycline antibiotics[54]
| Synthetic substance | MOF type | Objective | Linear range | LOD | Sample | Reference |
|---|---|---|---|---|---|---|
| QDs@Al-MOF | Composite MOF | ERY | 液态24.83~242.6 nmol/L; 水凝胶膜26~728 pmol/L | 液态2.16 nmol/L; 水凝胶膜2.42 pmol/L | — | [ |
| CDs@HZIF-8 | Composite MOF | TC; OTC; DOX | 0.5~50 µmol/L; 0.5~40 µmol/L; 0.5~40 µmol/L | 6.56 nmol/L; 29.46 nmol/L; 30.58 nmol/L | Milk | [ |
| FS@UIO66 | Composite MOF | LEV | 79.3~10 000 nmol/L | 0.280 8 µmol/L | Water | [ |
| Tb0.6Eu0.4-MOF | Pure MOF | SMZ | 2~140 µmol/L | 0.1 µmol/L | Fish | [ |
| TCPP@UiO-66-NDC | Composite MOF | AMX | 10~1 000 nmol/L; 1~100 µmol/L | 27 nmol/L | Capsules; Milk | [ |
| Eu-BDC | Composite MOF | TCH | 0.38~75 µmol/L | 0.115 µmol/L | Carp; Clam | [ |
| Eu-MOF | Composite MOF | AP; AMK; KAN | 0.001~100 µmol/L | 0.33 nmol/L; 0.32 nmol/L; 0.30 nmol/L | Milk; Honey | [ |
| NH2-MIL-101(Eu)@Fe-MOF | Composite MOF | FLA | 6~8 µmol/L | 4.8 nmol/L | — | [ |
表3 金属有机框架基合成材料对不同目标物比率荧光型的检测性能参数
Table 3 Detection performance parameters of metal-organic framework-based synthetic materials for different target substance ratio fluorescence types
| Synthetic substance | MOF type | Objective | Linear range | LOD | Sample | Reference |
|---|---|---|---|---|---|---|
| QDs@Al-MOF | Composite MOF | ERY | 液态24.83~242.6 nmol/L; 水凝胶膜26~728 pmol/L | 液态2.16 nmol/L; 水凝胶膜2.42 pmol/L | — | [ |
| CDs@HZIF-8 | Composite MOF | TC; OTC; DOX | 0.5~50 µmol/L; 0.5~40 µmol/L; 0.5~40 µmol/L | 6.56 nmol/L; 29.46 nmol/L; 30.58 nmol/L | Milk | [ |
| FS@UIO66 | Composite MOF | LEV | 79.3~10 000 nmol/L | 0.280 8 µmol/L | Water | [ |
| Tb0.6Eu0.4-MOF | Pure MOF | SMZ | 2~140 µmol/L | 0.1 µmol/L | Fish | [ |
| TCPP@UiO-66-NDC | Composite MOF | AMX | 10~1 000 nmol/L; 1~100 µmol/L | 27 nmol/L | Capsules; Milk | [ |
| Eu-BDC | Composite MOF | TCH | 0.38~75 µmol/L | 0.115 µmol/L | Carp; Clam | [ |
| Eu-MOF | Composite MOF | AP; AMK; KAN | 0.001~100 µmol/L | 0.33 nmol/L; 0.32 nmol/L; 0.30 nmol/L | Milk; Honey | [ |
| NH2-MIL-101(Eu)@Fe-MOF | Composite MOF | FLA | 6~8 µmol/L | 4.8 nmol/L | — | [ |
| [1] | BASSETTI S, TSCHUDIN-SUTTER S, EGLI A, et al. Optimizing antibiotic therapies to reduce the risk of bacterial resistance[J]. European Journal of Internal Medicine, 2022, 99: 7-12. |
| [2] | ZENG Y B, CHANG F Q, LIU Q, et al. Recent advances and perspectives on the sources and detection of antibiotics in aquatic environments[J]. Journal of Analytical Methods in Chemistry, 2022, 2022(1): 5091181. |
| [3] | SINGH H, THAKUR B, BHARDWAJ S K, et al. Nanomaterial-based fluorescent biosensors for the detection of antibiotics in foodstuffs: a review[J]. Food Chemistry, 2023, 426: 136657. |
| [4] | AKHTER S, BHAT M A, AHMED S, et al. Antibiotic residue contamination in the aquatic environment, sources and associated potential health risks[J]. Environmental Geochemistry and Health, 2024, 46(10): 387. |
| [5] | ZHOU W J, XU L, JIANG B Y. Target-initiated autonomous synthesis of metal-ion dependent DNAzymes for label-free and amplified fluorescence detection of kanamycin in milk samples[J]. Analytica Chimica Acta, 2021, 1148: 238195. |
| [6] | LI B, LEI Q J, WANG F, et al. A stable cationic Cd(II) coordination network as bifunctional chemosensor with high sensitively and selectively detection of antibiotics and Cr(VI) anions in water[J]. Journal of Solid State Chemistry, 2021, 298: 122117. |
| [7] | PERIS-VICENTE J, PERIS-GARCÍA E, ALBIOL-CHIVA J, et al. Liquid chromatography, a valuable tool in the determination of antibiotics in biological, food and environmental samples[J]. Microchemical Journal, 2022, 177: 107309. |
| [8] | SUN Y M, ZHAO J L, LIANG L J. Recent development of antibiotic detection in food and environment: the combination of sensors and nanomaterials[J]. Mikrochimica Acta, 2021, 188(1): 21. |
| [9] | DING Q Q, ZHANG W M, GUO Y H, et al. β-lactamase sensitive probe for rapid detection of antibiotic-resistant bacteria with gas chromatography-tandem mass spectrometry[J]. Analytical Chemistry, 2023, 95(14): 6098-6106. |
| [10] | MONDAL P P, MUTHUKUMAR D, FATHIMA S K P, et al. Interpenetrated robust metal-organic framework with urea-functionality-decked pores for selective and ultrasensitive detection of antibiotics and oxo-anions[J]. Crystal Growth & Design, 2023, 23(11): 8342-8351. |
| [11] | XIAO Y T, LIU S Y, GAO Y, et al. Determination of antibiotic residues in aquaculture products by liquid chromatography tandem mass spectrometry: recent trends and developments from 2010 to 2020[J]. Separations, 2022, 9(2): 35. |
| [12] | LI F, LUO J W, ZHU B Q, et al. Pretreatment methods for the determination of antibiotics residues in food samples and detected by liquid chromatography coupled with mass spectrometry detectors: a review[J]. Journal of Chromatographic Science, 2022, 60(10): 991-1003. |
| [13] | GUO X R, ZHOU L Y, LIU X Z, et al. Fluorescence detection platform of metal-organic frameworks for biomarkers[J]. Colloids and Surfaces B: Biointerfaces, 2023, 229: 113455. |
| [14] | LEI M Y, PAN X Z, LIU M Y, et al. A smartphone-assisted 2D Cd-MOF-based mixed-matrix membrane exhibiting visual and on-site quantitative sensing of antibiotics and pesticides for food safety[J]. Food Chemistry, 2025, 481: 144056. |
| [15] | NGUYEN T N, EBRAHIM F M, STYLIANOU K C. Photoluminescent, upconversion luminescent and nonlinear optical metal-organic frameworks: from fundamental photophysics to potential applications[J]. Coordination Chemistry Reviews, 2018, 377: 259-306. |
| [16] | LIN G, ZENG B, LI J, et al. A systematic review of metal organic frameworks materials for heavy metal removal: synthesis, applications and mechanism[J]. Chemical Engineering Journal, 2023, 460: 141710. |
| [17] | CHEN Z J, KIRLIKOVALI K O, LI P, et al. Reticular chemistry for highly porous metal-organic frameworks: the chemistry and applications[J]. Accounts of Chemical Research, 2022, 55(4): 579-591. |
| [18] | SHEN Y W, TISSOT A, SERRE C. Recent progress on MOF-based optical sensors for VOC sensing[J]. Chemical Science, 2022, 13(47): 13978-14007. |
| [19] | YI K Y, LI H, ZHANG X T, et al. Designed Tb(III)-functionalized MOF-808 as visible fluorescent probes for monitoring bilirubin and identifying fingerprints[J]. Inorganic Chemistry, 2021, 60(5): 3172-3180. |
| [20] | SUN Y X, BAI X, LUO A P, et al. Ratiometric fluorescent sensor CQD x @Co/Mn-MOF for rapid and sensitive detection of quinolone antibiotics[J]. Talanta, 2025, 293: 128034. |
| [21] | RAYAPPA M K, K S K, RATTU G, et al. Advances and effectiveness of metal-organic framework based bio/chemical sensors for rapid and ultrasensitive probing of antibiotic residues in foods[J]. Sustainable Food Technology, 2023, 1(2): 152-184. |
| [22] | ZHANG Q R, ZHANG Z, XU S H, et al. Photoinduced electron transfer-triggered g-C3N4\rhodamine B sensing system for the ratiometric fluorescence quantitation of carbendazim[J]. Analytical Chemistry, 2023, 95(9): 4536-4542. |
| [23] | WANG J X, YIN J, SHEKHAH O, et al. Energy transfer in metal-organic frameworks for fluorescence sensing[J]. ACS Applied Materials & Interfaces, 2022, 14(8): 9970-9986. |
| [24] | LI W X, FU Y C, LIU T Y, et al. High-throughput fluorescence quantification method based on inner filter effect and fluorescence imaging analysis[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2024, 318: 124422. |
| [25] | CHENG X, HUANG S, LEI Q, et al. The exquisite integration of ESIPT, PET and AIE for constructing fluorescent probe for Hg(II) detection and poisoning[J]. Chinese Chemical Letters, 2022, 33(4): 1861-1864. |
| [26] | WANG C Y, WANG C C, ZHANG X W, et al. A new Eu-MOF for ratiometrically fluorescent detection toward quinolone antibiotics and selective detection toward tetracycline antibiotics[J]. Chinese Chemical Letters, 2022, 33(3): 1353-1357. |
| [27] | OUYANG Y N, WANG R, WANG X Y, et al. Ultrafast energy transfer beyond the Förster approximation in organic photovoltaic blends with non-fullerene acceptors[J]. Science Advances, 2025, 11(12): eadr5973. |
| [28] | VERMA A K, NOUMANI A, YADAV A K, et al. FRET based biosensor: principle applications recent advances and challenges[J]. Diagnostics, 2023, 13(8): 1375. |
| [29] | BURDOV V A, VASILEVSKIY M I. Exciton-photon interactions in semiconductor nanocrystals: radiative transitions, non-radiative processes and environment effects[J]. Applied Sciences, 2021, 11(2): 497. |
| [30] | YANG G Z, LIU Y, TENG J S, et al. FRET ratiometric nanoprobes for nanoparticle monitoring[J]. Biosensors, 2021, 11(12): 505. |
| [31] | YI K Y, ZHANG L. Designed Eu(III)-functionalized nanoscale MOF probe based on fluorescence resonance energy transfer for the reversible sensing of trace Malachite green[J]. Food Chemistry, 2021, 354: 129584. |
| [32] | 何 伟, 陈 博, 刘金彦. 基于荧光内滤效应定量检测色氨酸和左氧氟沙星[J]. 分析试验室, 2024, 43(12): 1741-1746. |
| HE W, CHEN B, LIU J Y. Quantitative detection of tryptophan and levofloxacin based on inner-filter effect of fluorescence[J]. Chinese Journal of Analysis Laboratory, 2024, 43(12): 1741-1746 (in Chinese). | |
| [33] | ZHONG C L, QIU J W, TONG Y J, et al. High selective inner filter effect based method and its application in 2, 4, 6-trinitrophenol detection[J]. Dyes and Pigments, 2022, 206: 110654. |
| [34] | QIU H M, YANG H, GAO X, et al. Inner filter effect-based fluorescence assays toward environmental pesticides and antibiotics[J]. Coordination Chemistry Reviews, 2023, 493: 215305. |
| [35] | YAZHINI C, RAFI J, CHAKRABORTY P, et al. Inner filter effect on amino-functionalized metal-organic framework for the selective detection of tetracycline[J]. Journal of Cleaner Production, 2022, 373: 133929. |
| [36] | CHEN X L, SHANG L, LIU L, et al. A highly sensitive and multi-responsive Tb-MOF fluorescent sensor for the detection of Pb2+, Cr2O7 2-, B4O7 2-, aniline, nitrobenzene and cefixime[J]. Dyes and Pigments, 2021, 196: 109809. |
| [37] | LI R X, WANG W J, EL-SAYED E M, et al. Ratiometric fluorescence detection of tetracycline antibiotic based on a polynuclear lanthanide metal-organic framework[J]. Sensors and Actuators B: Chemical, 2021, 330: 129314. |
| [38] | MENG Z W, ZHANG T, ZHANG Z R, et al. Multi-metal MOF-on-MOF metal-organic gel-based visual sensing platform for ultrasensitive detection of chlortetracycline and D-penicillamine[J]. Biosensors & Bioelectronics, 2025, 271: 117012. |
| [39] | TANG S F, WANG J Y, XIE H H, et al. Four three-dimensional rare earth metal-organic framework fluorescent sensor for efficient detection of gentamicin sulfate and Fe3+ [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2024, 322: 124765. |
| [40] | CHEN M T, GAO S C, LIU R H, et al. Imprinted metal-organic framework for selective extraction and determination of fluoroquinolone antibiotics in food samples[J]. LWT, 2025, 223: 117743. |
| [41] | LAI Z Z, YANG X, QIN L, et al. Synthesis, dye adsorption, and fluorescence sensing of antibiotics of a zinc-based coordination polymer[J]. Journal of Solid State Chemistry, 2021, 300: 122278. |
| [42] | JIA X X, ZHANG W Z, ZHANG S T, et al. Two isomorphic Cd/Mn(II) MOFs based on V-shaped carboxylic acid ligands-synthesis and application in fluorescence detection of Fe3+, nitroaromatic explosives and sulfonamide antibiotics[J]. Journal of Solid State Chemistry, 2025, 348: 125366. |
| [43] | YUE X Y, WU C Y, ZHOU Z J, et al. Fluorescent sensing of ciprofloxacin and chloramphenicol in milk samples via inner filter effect and photoinduced electron transfer based on nanosized rod-shaped Eu-MOF[J]. Foods, 2022, 11(19): 3138. |
| [44] | HOU L, HUANG Y L, LIN T R, et al. A FRET ratiometric fluorescence biosensor for the selective determination of pyrophosphate ion and pyrophosphatase activity based on difunctional Cu-MOF nanozyme[J]. Biosensors and Bioelectronics: X, 2022, 10: 100101. |
| [45] | WANG L B, WANG J J, YUE E L, et al. Water-stable Cd-MOF with fluorescent sensing of tetracycline, pyrimethanil, abamectin benzoate and construction of logic gate[J]. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2023, 285: 121894. |
| [46] | CHEN J, XU F H, ZHANG Q, et al. Tetracycline antibiotics and NH4 + detection by Zn-organic framework fluorescent probe[J]. Analyst, 2021, 146(22): 6883-6892. |
| [47] | ZHAO Y Z, HAO H Y, WANG H B, et al. Antibiotic quantitative fluorescence chemical sensor based on Zn-MOF aggregation-induced emission characteristics[J]. Microchemical Journal, 2023, 190: 108626. |
| [48] | CONG Z Z, SONG Z F, MA Y X, et al. Highly emissive metal-organic frameworks for sensitive and selective detection of nitrofuran and quinolone antibiotics[J]. Chemistry-An Asian Journal, 2021, 16(13): 1773-1779. |
| [49] | FENG X, SHANG Y P, ZHANG K, et al. In situ ligand-induced Ln-MOFs based on a chromophore moiety: white light emission and turn-on detection of trace antibiotics[J]. CrystEngComm, 2022, 24(23): 4187-4200. |
| [50] | HASANI R, EHSANI A, HASSANZADAZAR H, et al. Copper metal-organic framework for selective detection of florfenicol based on fluorescence sensing in chicken meat[J]. Food Chemistry: X, 2024, 23: 101598. |
| [51] | HU Y Y, LIU Y, JIANG W Q, et al. Ratiometric fluorescence sensors utilizing lanthanide coordination polymers for detecting foodborne hazards: mechanisms, design strategies, applications, and future perspectives[J]. Trends in Food Science & Technology, 2025, 161: 105034. |
| [52] | CAI Y Y, DONG T, BIAN Z H, et al. Metal-organic frameworks based fluorescent sensing: mechanisms and detection applications[J]. Coordination Chemistry Reviews, 2025, 529: 216470. |
| [53] | AZEEZ K F, SALIMI A, HALLAJ R. MOF and CdTe quantum dots entrapped hydrogel film as dual-signal ratiometric fluorometric-colorimetric sensing platform for erythromycin detection: portable smartphone-assisted visual sensing in milk and water samples[J]. Food Chemistry, 2025, 482: 143972. |
| [54] | LI Y, WANG Y, DU P Y, et al. Fabrication of carbon dots@hierarchical mesoporous ZIF-8 for simultaneous ratiometric fluorescence detection and removal of tetracycline antibiotics[J]. Sensors and Actuators B: Chemical, 2022, 358: 131526. |
| [55] | LI J Y, DAI Y X, CUI J R, et al. Dye-encapsulated Zr-based MOFs composites as a sensitive platform for ratiometric luminescent sensing of antibiotics in water[J]. Talanta, 2023, 251: 123817. |
| [56] | YUE X Y, FU L, LI Y, et al. Lanthanide bimetallic MOF-based fluorescent sensor for sensitive and visual detection of sulfamerazine and malachite[J]. Food Chemistry, 2023, 410: 135390. |
| [57] | MA J Z, SHI Y, SONG Q, et al. Efficient porphyrin integrated UiO-66 probes for ratiometric fluorescence sensing of antibiotic residues in milk[J]. Mikrochimica Acta, 2024, 191(6): 304. |
| [58] | CHEN L T, LI Z J, DOU Y M, et al. Ratiometric fluoroprobe based on Eu-MOF@Tb3+ for detecting tetracycline hydrochloride in freshwater fish and its application in rapid visual detection[J]. Journal of Hazardous Materials, 2024, 469: 134045. |
| [59] | DENG T T, HE H B, CHEN H N, et al. Dual-ligand lanthanide metal-organic framework based ratiometric fluorescent platform for visual monitoring of aminoglycoside residues in food samples[J]. Talanta, 2024, 276: 126200. |
| [60] | GUO Y J, LI L F, ZHANG M F, et al. A self-assembly MOF-on-MOF heterostructure-driven fluorescence sensor for aerogel-based visualization detection of flavomycin[J]. Small, 2025, 21(11): 2410911. |
| [1] | 陈文涛, 庄杏宜, 安航宜, 来中杰, 王爱荣, 罗亚妮, 史忠丰, 李家明. 一例二维钴金属有机框架材料的合成、晶体结构及水中荧光识别性能研究[J]. 人工晶体学报, 2025, 54(9): 1642-1653. |
| [2] | 江涛, 梁晓彤, 廖思燕, 刘小慧, 余嘉俊, 邹霖, 邱燕璇. 基于5-氨基烟酸的锰金属有机框架的合成、结构及荧光传感性质[J]. 人工晶体学报, 2024, 53(2): 307-314. |
| [3] | 付凤艳, 王晓红, 高志华, 邢广恩, 张彦, 范培. 金属有机框架质子导体及其质子交换膜应用研究进展[J]. 人工晶体学报, 2024, 53(2): 218-230. |
| [4] | 付凤艳, 高志华, 王言, 王晓红, 张丽, 王培, 刘彦彬. UiO-66-NH2复合磺化聚磷腈质子交换膜的制备与表征[J]. 人工晶体学报, 2024, 53(10): 1809-1814. |
| [5] | 张文谦, 孙威, 曹铎, 牛亚杰, 吴文荣, 王东飞. 一种钡金属有机框架材料的合成及其晶体结构和发光性能的研究[J]. 人工晶体学报, 2022, 51(8): 1370-1377. |
| [6] | 朱百丽, 贺鹏珍, 王清华, 崔术新. 一种具有荧光性质的三维Zn(Ⅱ)金属-有机框架[J]. 人工晶体学报, 2021, 50(8): 1471-1477. |
| [7] | 代思玉, 刘宇奇, 李杨华, 王新颖, 李玮, 张青青. 双配体配位的Ni(Ⅱ)、Cu(Ⅱ)金属配合物的结构和性能[J]. 人工晶体学报, 2021, 50(12): 2283-2292. |
| [8] | 姚远;侯宏英;刘显茜;田川;孟堃;兰建;徐加雷;冯蒙蒙. 金属有机框架苯丙氨酸铜衍生的氧化铜负极的电化学储锂性能[J]. 人工晶体学报, 2020, 49(7): 1242-1245. |
| [9] | 王春玲;刘肖杰. 用于高效的氧还原反应MoF衍生的Co-N-C复合材料[J]. 人工晶体学报, 2019, 48(6): 1158-1162. |
| [10] | 韩秀萍;姚秉华;张绪元. 不同形貌Sb2O3的控制合成及其光催化性能研究[J]. 人工晶体学报, 2018, 47(8): 1566-1572. |
| [11] | 陈晨;赵健东;程婷;张晓. 纳米锰铈/γ-Al2O3复合催化剂的制备及其对抗生素生产废水的催化湿式氧化处理研究[J]. 人工晶体学报, 2018, 47(11): 2288-2294. |
| [12] | 刘春梅;王洋;吴元庆;张金晶;姚素英;陆晓东;周涛. 应用于生物荧光检测的微流控芯片的研究[J]. 人工晶体学报, 2017, 46(6): 1160-1165. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS