
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (7): 1189-1207.DOI: 10.16553/j.cnki.issn1000-985x.2025.0067
张淑艺1,2,3(
), 刘庚灵4, 王浩5,6, 鲁跃7, 姜显园7(
), 李文焯7, 刘聪8, 吕英波3, 武中臣3, 刘董1,3(
), 陈耀1,3
收稿日期:2025-04-01
出版日期:2025-07-20
发布日期:2025-07-30
通信作者:
姜显园,博士。E-mail:jiangxy@shanghaitech.edu.cn;刘 董,博士。E-mail:liudong@sdu.edu.cn
作者简介:张淑艺(1997—),女,山东省人,博士研究生。E-mail:zhangshuyi_123@163.com基金资助:
ZHANG Shuyi1,2,3(
), LIU Gengling4, WANG Hao5,6, LU Yue7, JIANG Xianyuan7(
), LI Wenzhuo7, LIU Cong8, LYU Yingbo3, WU Zhongchen3, LIU Dong1,3(
), CHEN Yao1,3
Received:2025-04-01
Online:2025-07-20
Published:2025-07-30
摘要: 随着全球对环境友好型光电材料需求的不断增长,锡基卤化物钙钛矿因环境友好及优异的光电性能,逐渐成为替代传统铅基钙钛矿的重要候选材料。尽管锡基钙钛矿在光吸收、载流子输运等方面展现出显著优势,但Sn2+极易氧化,加上快速结晶过程中容易形成晶格缺陷,使材料稳定性和器件性能受到较大影响。近年来,国内外研究者围绕锡基钙钛矿的晶体生长、缺陷调控及界面工程开展了大量系统性研究,提出了逆温结晶、降温结晶及高温熔融等多种合成技术,并借助多尺度表征手段,深入解析材料的微观结构、缺陷分布和界面特性。实验结果表明,通过合理优化生长参数和制备环境,可显著提高晶体质量、降低缺陷密度、改善载流子传输效率,从而推动锡基单晶在光电探测器、高灵敏度探测器、太阳能电池和场效应晶体管等器件中的应用。未来研究需聚焦单晶生长动力学、抗氧化策略及界面能级匹配的优化,以解决稳定性与可重复性问题,推动锡基钙钛矿的规模化应用。
中图分类号:
张淑艺, 刘庚灵, 王浩, 鲁跃, 姜显园, 李文焯, 刘聪, 吕英波, 武中臣, 刘董, 陈耀. 锡基钙钛矿晶体与器件的研究进展[J]. 人工晶体学报, 2025, 54(7): 1189-1207.
ZHANG Shuyi, LIU Gengling, WANG Hao, LU Yue, JIANG Xianyuan, LI Wenzhuo, LIU Cong, LYU Yingbo, WU Zhongchen, LIU Dong, CHEN Yao. Research Progress of Tin-Based Perovskite Crystals and Devices[J]. Journal of Synthetic Crystals, 2025, 54(7): 1189-1207.
图1 (a)Sn和Pb电子结构及SnI2和PbI2的价电子示意图[7];(b)MAPbI3和MASnI3能带示意图[7];Sn基钙钛矿的循环降解机制(c)[9]和各种缺陷的跃迁能(d)[18]
Fig.1 (a) Electronic structure of Sn and Pb, and schematic diagrams of valence electrons of SnI2 and PbI2[7]; (b) band schematics of MAPbI3 and MASnI3[7]; cyclic degradation mechanism (c)[9] and transition energies (d) for various defects[18] of tin-based perovskite
| 表征方法 | 优点 | 缺点 |
|---|---|---|
| XRD | 全面性:提供包括晶格常数、晶体取向和晶相在内的晶体结构信息。 非破坏性:非接触性的测试方法,无物理损伤。 | 信息局限性:对于单晶,无法提供局部缺陷的详细信息。 |
| EBSD | 实现局部分析:在微观层面提供晶体取向和晶格畸变详细信息。 高分辨率:适用于观察微观缺陷,如位错和晶界。 | 样品制备要求高:需要确保薄膜的均匀性和表面平整性,以便数据可靠。 破坏性:电子束照射下会损伤钙钛矿材料。 |
| SAED | 高空间分辨率:提供纳米尺寸的晶体结构信息,适用于钙钛矿单晶的微观结构分析。 直观的缺陷分析:能够直接观察晶体内部缺陷和杂质。 | 破坏性:高剂量电子束照射下会损伤钙钛矿材料。 |
| GIWAXS | 空间敏感性:适用于分析晶体的垂直结构,可详解钙钛矿单晶薄膜的晶体取向和应力状态。 非破坏性且适用于原位测试:同步辐射时间分辨快,可以在不同原位条件下对样品进行实时分析。 | 样品制备:需要确保薄膜的均匀性和表面平整性,以便数据可靠。 |
表1 不同结构表征技术的优势与劣势分析
Table 1 Analysis of the advantages and disadvantages of different structural characterization techniques
| 表征方法 | 优点 | 缺点 |
|---|---|---|
| XRD | 全面性:提供包括晶格常数、晶体取向和晶相在内的晶体结构信息。 非破坏性:非接触性的测试方法,无物理损伤。 | 信息局限性:对于单晶,无法提供局部缺陷的详细信息。 |
| EBSD | 实现局部分析:在微观层面提供晶体取向和晶格畸变详细信息。 高分辨率:适用于观察微观缺陷,如位错和晶界。 | 样品制备要求高:需要确保薄膜的均匀性和表面平整性,以便数据可靠。 破坏性:电子束照射下会损伤钙钛矿材料。 |
| SAED | 高空间分辨率:提供纳米尺寸的晶体结构信息,适用于钙钛矿单晶的微观结构分析。 直观的缺陷分析:能够直接观察晶体内部缺陷和杂质。 | 破坏性:高剂量电子束照射下会损伤钙钛矿材料。 |
| GIWAXS | 空间敏感性:适用于分析晶体的垂直结构,可详解钙钛矿单晶薄膜的晶体取向和应力状态。 非破坏性且适用于原位测试:同步辐射时间分辨快,可以在不同原位条件下对样品进行实时分析。 | 样品制备:需要确保薄膜的均匀性和表面平整性,以便数据可靠。 |
图2 (a)锡基钙钛矿的TEM及SAED[22];(b)3D钙钛矿薄膜的GIWAXS[24];(c)(PEA)2SnI4单晶的PL图,插图:光学照片[34];(d)体相和边缘态荧光发射示意图[35]
Fig.2 (a) TEM and SAED image of tin-based perovskite[22]; (b) GIWAXS pattern of 3D perovskite film[24]; (c) PL image of the (PEA)2SnI4 single crystal, insert: optical photograph[34]; (d) PL emission schematic of bulk and edge state[35]
| Material | Effective mass/(eV·cm2·s-2) | Mobility/(cm2·V-1·s-1) | Diffusion length/µm | Intrinsic carrier concentration/cm-3 | Compound lifespan/ns |
|---|---|---|---|---|---|
| MAPbI3 | 0.19~0.25m0 | 0.4~105 | 0.1~175 | 109 | 10~1000 |
| MASnI3 | 0.28m0 | 150~2 000 | 0.03~170 | 1014 | 0.2~10.3 |
| FASnI3 | — | 14~103 | 0.19~0.21 | 1011~1014 | 0.2~6.8 |
| CsSnI3 | 0.07m0 | 536~585 | 0.016~0.93 | 1014~1019 | 0.05~19.7 |
表2 Sn和Pb基钙钛矿的电学性质参数[38]
Table 2 Physical parameters of tin and lead based perovskites[38]
| Material | Effective mass/(eV·cm2·s-2) | Mobility/(cm2·V-1·s-1) | Diffusion length/µm | Intrinsic carrier concentration/cm-3 | Compound lifespan/ns |
|---|---|---|---|---|---|
| MAPbI3 | 0.19~0.25m0 | 0.4~105 | 0.1~175 | 109 | 10~1000 |
| MASnI3 | 0.28m0 | 150~2 000 | 0.03~170 | 1014 | 0.2~10.3 |
| FASnI3 | — | 14~103 | 0.19~0.21 | 1011~1014 | 0.2~6.8 |
| CsSnI3 | 0.07m0 | 536~585 | 0.016~0.93 | 1014~1019 | 0.05~19.7 |
图3 晶体生长示意图。(a)逆温结晶法;(b)降温结晶法;(c)水热法;(d)布里奇曼法
Fig.3 Growth schematic diagram of crystal. (a) Inverse temperature crystallization method; (b) lowing temperature-induced crystallization method; (c) hydrothermal crystallization method; (d) Bridgman crystallization method
| 制备方法 | 优点 | 缺点 |
|---|---|---|
| 逆温结晶法 | 晶体生长快:可在较短的时间内获得一定尺寸的晶体,有利于提高生产效率。 晶体尺寸大:通过晶种调控法,得到更大尺寸晶体。 | 晶体质量问题:高温容易氧化,并且和溶剂结合后容易产生多种副产物。 |
| 降温结晶法 | 结晶质量高:生长条件接近平衡,可获得高结晶质量、低缺陷密度的大尺寸单晶。 生长易控制:可根据程序化温控精确调节生长速率和形貌。 | 生长周期较长:降温过程通常需要较长的时间才能使溶液达到过饱和状态并开始结晶,不利于快速获得晶体。 |
| 高温结晶法 | 获得高质量晶体:适用于无机钙钛矿(如CsSnI3),可在高温下获得大体积、高热稳定性单晶。 | 能耗高:需高温熔体处理,设备昂贵且能耗高。 组分限制:不适用于含有机阳离子体系。 |
表3 Sn基钙钛矿晶体制备方法的优缺点对比
Table 3 Comparison of advantages and disadvantages of preparation methods for Sn-based perovskite crystals
| 制备方法 | 优点 | 缺点 |
|---|---|---|
| 逆温结晶法 | 晶体生长快:可在较短的时间内获得一定尺寸的晶体,有利于提高生产效率。 晶体尺寸大:通过晶种调控法,得到更大尺寸晶体。 | 晶体质量问题:高温容易氧化,并且和溶剂结合后容易产生多种副产物。 |
| 降温结晶法 | 结晶质量高:生长条件接近平衡,可获得高结晶质量、低缺陷密度的大尺寸单晶。 生长易控制:可根据程序化温控精确调节生长速率和形貌。 | 生长周期较长:降温过程通常需要较长的时间才能使溶液达到过饱和状态并开始结晶,不利于快速获得晶体。 |
| 高温结晶法 | 获得高质量晶体:适用于无机钙钛矿(如CsSnI3),可在高温下获得大体积、高热稳定性单晶。 | 能耗高:需高温熔体处理,设备昂贵且能耗高。 组分限制:不适用于含有机阳离子体系。 |
图4 (a)FAPb1-x Sn x Br3单晶照片[40];(b)MASnI3单晶生长示意图及照片[41];(c)MASnBr3的照片[42];(d)(MAPbI3) x (FASnI3)1-x 单晶照片[3]
Fig.4 (a) Photographs of FAPb1-x Sn x Br3 single crystal[40]; (b) the growth schematic and photograph of MASnI3 single crystal[41]; (c) photograph of MASnBr3[42]; (d) photographs of (MAPbI3) x (FASnI3)1-x single crystals[3]
图5 (a)可逆DMASnI3转化过程[43];(C8H9F3N)2Pb1-x Sn x I4单晶生长示意图(b)及照片(c)[4];(d)MASnI3和FASnI3单晶[44];(e)NH(CH3)3SnX3单晶[45];(f)MASnI3晶体[47];(g)MAPb x Sn1-x Br3单晶[46]
Fig.5 (a) Reversible DMASnI3 transformation process[43]; the growth schematic (b) and photograph (c) of (C8H9F3N)2Pb1-x Sn x I4 single crystals[4]; (d) MASnI3 and FASnI3 single crystals[44]; (e) NH(CH3)3SnX3 single crystal[45]; (f) MASnI3 crystal[47]; (g) MAPb x Sn1-x Br3 single crystals[46]
图6 (a)Cs2SnCl6-x Br x 单晶[48];(b)CsSn x Pb1-x Br3单晶[49];(c)CsSnI3晶锭[51];(d)Cs(Pb0.75Sn0.25)(Br1.00Cl2.00)晶锭[52];(e)CsSnBr3和CsPbBr3晶体[53]
Fig.6 (a) Cs2SnCl6-x Br x single crystals[48]; (b) CsSn x Pb1-x Br3 single crystal[49]; (c) ingot of CsSnI3[51]; (d) ingot of Cs(Pb0.75Sn0.25)(Br1.00Cl2.00) [52]; (e) CsSnBr3 and CsPbBr3 single crystals[53]
图7 (a)(HSCH2CH2NH3)2SnBr6和(HSCH2CH2NH3)2SnI4单晶及(b)(HSCH2CH2NH3)2SnI4颜色可逆转换过程[54];2D-CsSnI3(c)[55]和FPEA2SnI4(d)的生长示意图[56];(e)MDASn2I6生长示意图及单晶照片[57];(f)(R/S-α-PEA)SnCl3和(R/S-α-PEA)SnBr3单晶[58];(g)B-γ CsSnI3生长示意图及单晶[59];(h)MASnI3单晶[41]
Fig.7 (a) (HSCH2CH2NH3)2SnBr6 and (HSCH2CH2NH3)2SnI4 single crystals, (b) reversible color transformation processes of (HSCH2CH2NH3)2SnI4[54]; growth schematic of 2D CsSnI3 (c)[55] and FPEA2SnI4 (d)[56]; (e) growth schematic and photograph of MDASn2I6[57]; (f) (R/S-α-PEA)SnCl3 and (R/S-α-PEA)SnBr3 single crystals[58]; (g) growth schematic of B-γ CsSnI3[59]; (h) MASnI3 single crystal[41]
| Preparation method | Single crystal | Lattice constant/Å | Eg/eV | τm/ns | nt/cm-3 | µ/(cm2·V-1·s-1) |
|---|---|---|---|---|---|---|
| 逆温结晶法 | FAPb0.97Sn0.03Br3[ | 5.98 | 2.04 | — | 2.40×1011 | 0.22 |
| 逆温结晶法 | (MAPbI3)0.2(FASnI3)0.8[ | — | — | — | 1.83×109 | — |
| 降温结晶法 | DMASnI3-black[ | a=14.72 b=8.32 c=8.80 | 1.32 | τ1=21.61 τ2=495.13 | ~1.50×1011 | ~5.00 |
| 降温结晶法 | (C8H9F3N)2Pb0.5Sn0.5I4[ | a=18.40 b=8.53 c=8.67 | 1.96 | τ1=0.396 τ2=3.270 | 1.22×109 | 1.00 |
| 降温结晶法 | (C8H9F3N)2SnI4[ | a=18.31 b=8.53 c=8.62 | 2.00 | τ=0.245 | 1.03×109 | 9.23 |
| 降温结晶法 | MAPb0.68Sn0.32Br3[ | 5.92 | 1.80 | τ1=348.60 τ2=2 098.09 | 6.47×1011 | 13.55 |
| 水热法 | CsSn0.5Pb0.5Br3[ | a=8.24 b=11.59 c=8.02 | 1.66 | — | 1.19×1011 | 1.3×103 |
| 布里奇曼法 | CsSnI3[ | — | 1.30 | — | — | 585.00 |
表4 Sn基钙钛矿单晶性能对比
Table 4 Performance comparison of Sn-based perovskite single crystals
| Preparation method | Single crystal | Lattice constant/Å | Eg/eV | τm/ns | nt/cm-3 | µ/(cm2·V-1·s-1) |
|---|---|---|---|---|---|---|
| 逆温结晶法 | FAPb0.97Sn0.03Br3[ | 5.98 | 2.04 | — | 2.40×1011 | 0.22 |
| 逆温结晶法 | (MAPbI3)0.2(FASnI3)0.8[ | — | — | — | 1.83×109 | — |
| 降温结晶法 | DMASnI3-black[ | a=14.72 b=8.32 c=8.80 | 1.32 | τ1=21.61 τ2=495.13 | ~1.50×1011 | ~5.00 |
| 降温结晶法 | (C8H9F3N)2Pb0.5Sn0.5I4[ | a=18.40 b=8.53 c=8.67 | 1.96 | τ1=0.396 τ2=3.270 | 1.22×109 | 1.00 |
| 降温结晶法 | (C8H9F3N)2SnI4[ | a=18.31 b=8.53 c=8.62 | 2.00 | τ=0.245 | 1.03×109 | 9.23 |
| 降温结晶法 | MAPb0.68Sn0.32Br3[ | 5.92 | 1.80 | τ1=348.60 τ2=2 098.09 | 6.47×1011 | 13.55 |
| 水热法 | CsSn0.5Pb0.5Br3[ | a=8.24 b=11.59 c=8.02 | 1.66 | — | 1.19×1011 | 1.3×103 |
| 布里奇曼法 | CsSnI3[ | — | 1.30 | — | — | 585.00 |
| Detector feature | Single crystal | Structure of device | Electrode type | D* /Jones | R/(A·W-1) |
|---|---|---|---|---|---|
| 窄带隙 | Cs2SnCl6-x Br x[ | 垂直 | Au | 2.71×1010 | — |
| 窄带隙 | MAPb0.76Sn0.24I3[ | 垂直 | Cu | 1.19×1010 | — |
| 窄带隙近红外 | (FASnI3)0.1(MAPbI3)0.9[ | 垂直 | Ag和ITO异质 | 7.09×1010 | 0.530 |
| 准单晶自驱动 | FASnI3[ | 垂直 | Cu和ITO异质 | 4.50×1010 | 0.554 |
| 准单晶近红外 | FASnI3[ | 垂直 | Ag和ITO异质 | >1.00×1013 | 0.430 |
| 平面对称 | 2D-(C8H9F3N)2Pb0.5Sn0.5I4[ | 平面 | Au | 8.60×1010 | 0.668 |
| 宽带隙 | 2D-Cs2SnI6[ | 平面 | Cr/Au复合 | 1.27×1011 | 6.25×105 |
表5 Sn基钙钛矿单晶光电探测器性能
Table 5 Performance of tin-based perovskite single crystal photodetectors
| Detector feature | Single crystal | Structure of device | Electrode type | D* /Jones | R/(A·W-1) |
|---|---|---|---|---|---|
| 窄带隙 | Cs2SnCl6-x Br x[ | 垂直 | Au | 2.71×1010 | — |
| 窄带隙 | MAPb0.76Sn0.24I3[ | 垂直 | Cu | 1.19×1010 | — |
| 窄带隙近红外 | (FASnI3)0.1(MAPbI3)0.9[ | 垂直 | Ag和ITO异质 | 7.09×1010 | 0.530 |
| 准单晶自驱动 | FASnI3[ | 垂直 | Cu和ITO异质 | 4.50×1010 | 0.554 |
| 准单晶近红外 | FASnI3[ | 垂直 | Ag和ITO异质 | >1.00×1013 | 0.430 |
| 平面对称 | 2D-(C8H9F3N)2Pb0.5Sn0.5I4[ | 平面 | Au | 8.60×1010 | 0.668 |
| 宽带隙 | 2D-Cs2SnI6[ | 平面 | Cr/Au复合 | 1.27×1011 | 6.25×105 |
图8 (a)Cs2SnBr6探测器的D*[48];(b)Sn-Pb混合钙钛矿探测器的D*[62];近红外光电探测器的D* (c)、光瞬态响应(d)[63];FASnI3和准单晶FASnI3器件的D* (e)和响应速度曲线(f)[64];(g)准单晶光电探测器的D*[2];(C8H9F3N)2Pb0.5Sn0.5I4(h)[4]和Cs2SnI6(i)[65]的R和D*
Fig.8 (a) D* of Cs2SnBr6 photodetectors[48]; (b) D* of detectors based on Sn-Pb mixed perovskite[62]; D* (c), photo transient response (d) of the NIR photodetector[63]; D* (e) and the response speed curves (f) of the FASnI3 and quasi-single-crystal-FASnI3 devices[64]; (g) D* of quasi-single-crystal photodetector[2]; R and D* of (C8H9F3N)2Pb0.5Sn0.5I4 (h)[4] and Cs2SnI6 (i)[65]
图9 (a)FPI-FSI和FPI单晶X射线探测器的μτ值[56];(b)FPI-FSI和FPI单晶X射线探测器的灵敏度[56];(c)FPI-FSI串联单晶器件的操作稳定性测量[56];FASnI3-PAI探测器的暗电流漂移(d)、灵敏度(e)和信噪比(f)[66]
Fig.9 (a) Mobility-lifetime (μτ) values of FPI-FSI and FPI single crystals X-ray detectors[56]; (b) the sensitivity of FPI-FSI and FPI single crystals X-ray detectors[56]; (c) the operational stability measurement of FPI-FSI tandem single-crystal devices[56]; (d) dark current drift, (e) sensitivity and (f) signal-to-noise ratio of the FASnI3-PAI detector[66]
| Structure of device | Mobility lifetime product/(cm2·V-1) | Sensitivity/(μC·Gy-1·cm-2) | Minimum detection limit/(nGy·s-1) | Rising and falling time/ns |
|---|---|---|---|---|
| Cr/FPEA2PbI4/C60/BCP/Au[ | 2×10-5 | 3.0×104 | — | — |
| Cr/FPEA2SnI4/FPEA2PbI4/C60/BCP/Au[ | 4×10-5 | 1.7×105 | 4.2 | — |
| ITO/PEDOT/FASnI3/ICBA/BCP/Ag[ | 1.50×10-6 | 1 391 | — | Rising: 16.1 Falling: 20.5 |
| ITO/PEDOT/FASnI3-PAI/ICBA/BCP/Ag[ | 2.92×10-4 | 5 535 | 7.95 | Rising: 8.9 Falling: 16.3 |
表6 Sn基钙钛矿单晶X射线探测器性能
Table 6 Performance of tin-based perovskite single crystal X-ray detectors
| Structure of device | Mobility lifetime product/(cm2·V-1) | Sensitivity/(μC·Gy-1·cm-2) | Minimum detection limit/(nGy·s-1) | Rising and falling time/ns |
|---|---|---|---|---|
| Cr/FPEA2PbI4/C60/BCP/Au[ | 2×10-5 | 3.0×104 | — | — |
| Cr/FPEA2SnI4/FPEA2PbI4/C60/BCP/Au[ | 4×10-5 | 1.7×105 | 4.2 | — |
| ITO/PEDOT/FASnI3/ICBA/BCP/Ag[ | 1.50×10-6 | 1 391 | — | Rising: 16.1 Falling: 20.5 |
| ITO/PEDOT/FASnI3-PAI/ICBA/BCP/Ag[ | 2.92×10-4 | 5 535 | 7.95 | Rising: 8.9 Falling: 16.3 |
图10 不同电子传输层器件[31](a)、电子和缺陷补偿的Sn基钙钛矿太阳能电池[67](b)、FASnI3太阳能电池[68](c)的J-V曲线;(d)含有超晶格结构电池的效率及外量子效率图[11];(e)超晶格结构的STEM图像[11]
Fig.10 J-V curves of different electronic transport layer devices[31] (a), tin-based perovskite solar cells with electron and defect compensation (EDC)[67] (b), FASnI3 perovskite solar cells[68] (c); (d) efficiency and external quantum efficiency graph of solar cell with superlattice structure[11]; (e) STEM images of superlattice structures[11]
| Structure of device | Jsc/(mA·cm-2) | Voc/V | FF/% | PCE/% | Year |
|---|---|---|---|---|---|
| ITO/PEDOT∶PSS/FA0.95PEA0.15SnI3/ICBA/BCP/Ag[ | 17.40 | 0.94 | 75.00 | 12.40 | 2020 |
| ITO/ICBA/BA2SnI4/BA2MA4Sn5I16/PTAA/Au[ | 17.53 | 0.97 | 72.80 | 12.36 | 2022 |
| ITO/PEDOT∶PSS/FA0.8PEA0.2SnI2.85Br0.15/ICBA/BCP/Ag[ | 18.89 | 1.01 | 73.21 | 14.02 | 2023 |
| ITO/PEDOT∶PSS/(CsI)0.05(PEA0.15FA0.85SnI2.85Br0.15)0.95/ICBA/BCP/Ag[ | 23.07 | 0.99 | 74.83 | 17.13 | 2025 |
表7 太阳能电池性能参数对比
Table 7 Comparison of performance parameters of solar cells
| Structure of device | Jsc/(mA·cm-2) | Voc/V | FF/% | PCE/% | Year |
|---|---|---|---|---|---|
| ITO/PEDOT∶PSS/FA0.95PEA0.15SnI3/ICBA/BCP/Ag[ | 17.40 | 0.94 | 75.00 | 12.40 | 2020 |
| ITO/ICBA/BA2SnI4/BA2MA4Sn5I16/PTAA/Au[ | 17.53 | 0.97 | 72.80 | 12.36 | 2022 |
| ITO/PEDOT∶PSS/FA0.8PEA0.2SnI2.85Br0.15/ICBA/BCP/Ag[ | 18.89 | 1.01 | 73.21 | 14.02 | 2023 |
| ITO/PEDOT∶PSS/(CsI)0.05(PEA0.15FA0.85SnI2.85Br0.15)0.95/ICBA/BCP/Ag[ | 23.07 | 0.99 | 74.83 | 17.13 | 2025 |
| Main structure | Grid voltage/V | Capacitance/(nF·cm-2) | Mobility/(cm2·V-1·s-1) | Current-switching ratio | Threshold voltage/V | Year |
|---|---|---|---|---|---|---|
| (PEA)2CsSn2I(300 nm SiO2)[ | -50~0 | 11.5 | 34 | — | — | 2018 |
| (PEA)2SnI4(100 nm SiO2)[ | -50~0 | 29.3 | 42.1 17 21 | 3.6×106 ~102 ~102 | -26.8 — — | 2019 |
| 4AMPSnI4(60 nm Al2O3)[ | -20~0 | 80 | 0.57 | 4.2×102 | -2.5 | 2024 |
表8 场效应晶体管性能参数
Table 8 Performance parameters of field effect transistors
| Main structure | Grid voltage/V | Capacitance/(nF·cm-2) | Mobility/(cm2·V-1·s-1) | Current-switching ratio | Threshold voltage/V | Year |
|---|---|---|---|---|---|---|
| (PEA)2CsSn2I(300 nm SiO2)[ | -50~0 | 11.5 | 34 | — | — | 2018 |
| (PEA)2SnI4(100 nm SiO2)[ | -50~0 | 29.3 | 42.1 17 21 | 3.6×106 ~102 ~102 | -26.8 — — | 2019 |
| 4AMPSnI4(60 nm Al2O3)[ | -20~0 | 80 | 0.57 | 4.2×102 | -2.5 | 2024 |
图11 (a)机械剥离的(PEA)2SnI4 FET构型图[5];(b)合成与机械剥离晶体的光学图像[5];(c)(PEA)2SnI4 FET的转移曲线[5];(d)机械剥离的(PEA)2CsSn2I7单晶光学图像[73];(e)不同栅压下的输出特性曲线,插图为FET器件的光学图像[73];(f)从正扫和反扫的转移曲线提取出的载流子迁移率[73];(g)DJ相4AMPSnI4的FET构型[6];(h)转移特性曲线[6];(i)20次连续循环的开关特性[6]
Fig.11 (a) Schematic diagram of the mechanically exfoliated (PEA)2SnI4 FET[5]; (b) optical image of the synthesized and mechanically exfoliated crystal[5]; (c) transfer characteristic curve of the (PEA)2SnI4 FET[5]; (d) optical image of the mechanically exfoliated (PEA)2CsSn2I7 single crystal[73]; (e) output characteristic curves under different gate voltages, with the inset showing the optical image of the FET device[73]; (f) carrier mobility extracted from the forward and reverse sweeps of the transfer curves[73]; (g) FET structure of the DJ-phase 4AMPSnI4[6]; (h) transfer characteristic curves[6]; (i) switching characteristics over 20 consecutive cycles[6]
| [1] | KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. |
| [2] | GAO W Y, LIU X, JIN H F, et al. Seed-crystal-assisted space-confined growth of FASnI3 quasi-single-crystal thick films and their photodetection characteristics[J]. ACS Energy Letters, 2024, 9(10): 5045-5055. |
| [3] | LI Q, WANG S R, JIA C, et al. High-performance planar self-driven visible and near-infrared photodetector based on Pb-Sn perovskite single crystals[J]. The Journal of Physical Chemistry Letters, 2023, 14(22): 5148-5154. |
| [4] | JIANG X M, LI T T, KONG Q Z, et al. Centimeter-sized novel two-dimensional organic lead-tin mixed iodide single crystals for efficient photodetector applications[J]. Inorganic Chemistry Frontiers, 2024, 11(2): 451-461. |
| [5] | MATSUSHIMA T, LEYDEN M R, FUJIHARA T, et al. Large metal halide perovskite crystals for field-effect transistor applications[J]. Applied Physics Letters, 2019, 115(12): 120601. |
| [6] | LIAO C, BERNARDI S, BAILEY C G, et al. Piperidine and pyridine series lead-free dion-jacobson phase tin perovskite single crystals and their applications for field-effect transistors[J]. ACS Nano, 2024, 18(22): 14176-14186. |
| [7] | JIANG X Y, ZANG Z H, ZHOU Y Y, et al. Tin halide perovskite solar cells: an emerging thin-film photovoltaic technology[J]. Accounts of Materials Research, 2021, 2(4): 210-219. |
| [8] | SHAO J Y, LI D M, SHI J J, et al. Recent progress in perovskite solar cells: material science[J]. Science China Chemistry, 2023, 66(1): 10-64. |
| [9] | LANZETTA L, WEBB T, ZIBOUCHE N, et al. Degradation mechanism of hybrid tin-based perovskite solar cells and the critical role of tin (IV) iodide[J]. Nature Communications, 2021, 12(1): 2853. |
| [10] | LIU D, ZHENG Y C, SUI X Y, et al. Universal growth of perovskite thin monocrystals from high solute flux for sensitive self-driven X-ray detection[J]. Nature Communications, 2024, 15(1): 2390. |
| [11] | LEI Y S, LI Y H, LU C, et al. Perovskite superlattices with efficient carrier dynamics[J]. Nature, 2022, 608(7922): 317-323. |
| [12] | SUN N, GAO W Y, DONG H, et al. Architecture of p-i-n Sn-based perovskite solar cells: characteristics, advances, and perspectives[J]. ACS Energy Letters, 2021, 6(8): 2863-2875. |
| [13] | TRAVIS W, GLOVER E N K, BRONSTEIN H, et al. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system[J]. Chemical Science, 2016, 7(7): 4548-4556. |
| [14] | GAI C L, WANG J G, WANG Y S, et al. The low-dimensional three-dimensional tin halide perovskite: film characterization and device performance[J]. Energies, 2020, 13(1): 2. |
| [15] | NASTI G, ABATE A. Tin halide perovskite (ASnX3) solar cells: a comprehensive guide toward the highest power conversion efficiency[J]. Advanced Energy Materials, 2020, 10(13): 1902467. |
| [16] | YAN Y J, PULLERITS T, ZHENG K B, et al. Advancing tin halide perovskites: strategies toward the ASnX3 paradigm for efficient and durable optoelectronics[J]. ACS Energy Letters, 2020, 5(6): 2052-2086. |
| [17] | LIN R X, XIAO K, QIN Z Y, et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink[J]. Nature Energy, 2019, 4(10): 864-873. |
| [18] | XU P, CHEN S Y, XIANG H J, et al. Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnI3 [J]. Chemistry of Materials, 2014, 26(20): 6068-6072. |
| [19] | LIU D, JIANG X Y, WANG H, et al. Perovskite single crystals by vacuum evaporation crystallization[J]. Advanced Science, 2024, 11(22): 2400150. |
| [20] | SUN H Y, ADHYAKSA G W P, GARNETT E C. The application of electron backscatter diffraction on halide perovskite materials[J]. Advanced Energy Materials, 2020, 10(26): 2000364. |
| [21] | DENG Y H. Common phase and structure misidentifications in high-resolution TEM characterization of perovskite materials[J]. Condensed Matter, 2021, 6(1): 6010001. |
| [22] | YUAN B, YU Y. High-resolution transmission electron microscopy of beam-sensitive halide perovskites[J]. Chem, 2022, 8(2): 327-339. |
| [23] | YANG T Y, WEN W, YIN G Z, et al. Introduction of the X-ray diffraction beamline of SSRF[J]. Nuclear Science and Techniques, 2015, 26(2): 1-5. |
| [24] | QIN M C, CHAN P F, LU X H. A systematic review of metal halide perovskite crystallization and film formation mechanism unveiled by in situ GIWAXS[J]. Advanced Materials, 2021, 33(51): 2105290. |
| [25] | CODURI M, STROBEL T A, SZAFRAŃSKI M, et al. Band gap engineering in MASnBr3 and CsSnBr3 perovskites: mechanistic insights through the application of pressure[J]. The Journal of Physical Chemistry Letters, 2019, 10(23): 7398-7405. |
| [26] | CODURI M, SHIELL T B, STROBEL T A, et al. Origin of pressure-induced band gap tuning in tin halide perovskites[J]. Materials Advances, 2020, 1(8): 2840-2845. |
| [27] | MUSA SAAD H E M, ALSOBHI B O, ALMESHAL A. Tuning of band gap and enhancing electronic properties of CsSnBr3 under high pressure for optoelectronic applications[J]. Computational Condensed Matter, 2024, 38: e00870. |
| [28] | STEELE J A, SOLANO E, HARDY D, et al. How to GIWAXS: grazing incidence wide angle X-ray scattering applied to metal halide perovskite thin films[J]. Advanced Energy Materials, 2023, 13(27): 2300760. |
| [29] | ZHOU J H, HAO M W, ZHANG Y, et al. Chemo-thermal surface dedoping for high-performance tin perovskite solar cells[J]. Matter, 2022, 5(2): 683-693. |
| [30] | WANG F, JIANG X Y, CHEN H, et al. 2D-quasi-2D-3D hierarchy structure for tin perovskite solar cells with enhanced efficiency and stability[J]. Joule, 2018, 2(12): 2732-2743. |
| [31] | JIANG X Y, WANG F, WEI Q, et al. Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design[J]. Nature Communications, 2020, 11(1): 1245. |
| [32] | OZAKI M, KATSUKI Y, LIU J W, et al. Solvent-coordinated tin halide complexes as purified precursors for tin-based perovskites[J]. ACS Omega, 2017, 2(10): 7016-7021. |
| [33] | PARK I H, CHU L Q, LENG K, et al. Highly stable two-dimensional tin(II) iodide hybrid organic-inorganic perovskite based on stilbene derivative[J]. Advanced Functional Materials, 2019, 29(39): 1904810. |
| [34] | NAWALE V V, SHEIKH T, NAG A. Dual excitonic emission in hybrid 2D layered tin iodide perovskites[J]. The Journal of Physical Chemistry C, 2020, 124(38): 21129-21136. |
| [35] | BLANCON J C, TSAI H, NIE W, et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites[J]. Science, 2017, 355(6331): 1288-1292. |
| [36] | SHAO Y, GAO W, YAN H J, et al. Unlocking surface octahedral tilt in two-dimensional Ruddlesden-Popper perovskites[J]. Nature Communications, 2022, 13(1): 138. |
| [37] | LIU D, JIANG L, JIANG X Y, et al. Interface-tension-assisted temperature-gradient crystallization of high-quality MAPbBr3 perovskite single crystals with low defect densities[J]. ACS Applied Materials & Interfaces, 2023: acsami.3c13614. |
| [38] | KONSTANTAKOU M, STERGIOPOULOS T. A critical review on tin halide perovskite solar cells[J]. Journal of Materials Chemistry A, 2017, 5(23): 11518-11549. |
| [39] | WANG A F, GUO Y Y, ZHOU Z B, et al. Aqueous acid-based synthesis of lead-free tin halide perovskites with near-unity photoluminescence quantum efficiency[J]. Chemical Science, 2019, 10(17): 4573-4579. |
| [40] | NG M, HALPERT J E. Single crystals of mixed Br/Cl and Sn-doped formamidinium lead halide perovskites via inverse temperature crystallization[J]. RSC Advances, 2020, 10(7): 3832-3836. |
| [41] | YUAN Z H, ZHOU J H, ZHANG Y, et al. Growing MASnI3 perovskite single-crystal films by inverse temperature crystallization[J]. Journal of Physics Condensed Matter, 2022, 34(14): 1-7. |
| [42] | ZHUMEKENOV A A, BURLAKOV V M, SAIDAMINOV M I, et al. The role of surface tension in the crystallization of metal halide perovskites[J]. ACS Energy Letters, 2017, 2(8): 1782-1788. |
| [43] | JU D X, ZHENG X P, LIU J L, et al. Reversible band gap narrowing of Sn-based hybrid perovskite single crystal with excellent phase stability[J]. Angewandte Chemie International Edition, 2018, 57(45): 14868-14872. |
| [44] | DANG Y Y, ZHOU Y A, LIU X L, et al. Formation of hybrid perovskite tin iodide single crystals by top-seeded solution growth[J]. Angewandte Chemie International Edition, 2016, 55(10): 3447-3450. |
| [45] | DANG Y Y, ZHONG C, ZHANG G D, et al. Crystallographic investigations into properties of acentric hybrid perovskite single crystals NH(CH3)3SnX3 (X = Cl, Br)[J]. Chemistry of Materials, 2016, 28(19): 6968-6974. |
| [46] | JU D X, DANG Y Y, ZHU Z L, et al. Tunable band gap and long carrier recombination lifetime of stable mixed CH3NH3Pb x Sn1- x Br3 single crystals[J]. Chemistry of Materials, 2018, 30(5): 1556-1565. |
| [47] | YAO Z, YANG Z, LIU Y C, et al. Local temperature reduction induced crystallization of MASnI3 and achieving a direct wafer production[J]. RSC Advances, 2017, 7(61): 38155-38159. |
| [48] | ZHOU J, LUO J J, RONG X M, et al. Lead-free perovskite derivative Cs2SnCl6- x Br x single crystals for narrowband photodetectors[J]. Advanced Optical Materials, 2019, 7(10): 1900139. |
| [49] | XIAN Y M, ZHANG Y L, RAHMAN N U, et al. An emerging all-inorganic CsSn x Pb1- x Br3 (0≤x≤1) perovskite single crystal: insight on structural phase transition and electronic properties[J]. The Journal of Physical Chemistry C, 2020, 124(24): 13434-13446. |
| [50] | ANDREWS R H, DONALDSON J D, SILVER J, et al. Crystal growth of caesium tin(II) trichloro-bromides[J]. Journal of Materials Science, 1975, 10(8): 1449-1451. |
| [51] | CHUNG I, LEE B, HE J Q, et al. All-solid-state dye-sensitized solar cells with high efficiency[J]. Nature, 2012, 485(7399): 486-489. |
| [52] | VALUEVA A D, NOVIKOV S A, BLEDSOE J, et al. Cubic halide perovskites in the Cs(Pb1- x Sn x )(Br3- y Cl y ) solid solutions for crack-free Bridgman grown single crystals[J]. MRS Communications, 2024, 14(5): 942-948. |
| [53] | WANG Y P, SUN X, CHEN Z Z, et al. High-temperature ionic epitaxy of halide perovskite thin film and the hidden carrier dynamics[J]. Advanced Materials, 2017, 29(35): 1702643. |
| [54] | SONG Z X, YU B Y, WEI J, et al. Organic-inorganic hybrid tin halide single crystals with sulfhydryl and hydroxyl groups: formation, optical properties, and stability[J]. Inorganic Chemistry, 2022, 61(18): 6943-6952. |
| [55] | YIN Y, SHI X Y, WANG C L, et al. Space-confined chemical vapor deposition synthesis of all-inorganic CsSnI3 perovskite nanosheets[J]. The Journal of Physical Chemistry C, 2024, 128(20): 8324-8330. |
| [56] | LI M B, HE Y H, FENG X P, et al. Reductant engineering in stable and high-quality tin perovskite single crystal growth for heterojunction X-ray detectors[J]. Advanced Materials, 2023, 35(48): 2307042. |
| [57] | NIU Y W, ZHANG M G, JIANG X M, et al. Acquiring bulk photovoltaic effect in one-dimensional Sn-based perovskite single crystals by nonlinear organic diamine[J]. ACS Materials Letters, 2024, 6(1): 115-122. |
| [58] | TAO K Z, LI Q, YAN Q F. 1D tin(II)-based chiral hybrid perovskite single crystals with extremely distorted inorganic chains for second harmonic generation[J]. Advanced Optical Materials, 2024, 12(17): 2400018. |
| [59] | SUN Q, GU A J, YU H X, et al. A single crystal derived precursor for improving the performance of CsSnI3 perovskite solar cells[J]. Journal of Materials Chemistry A, 2023, 11(32): 17292-17297. |
| [60] | MITZI D B, FEILD C A, SCHLESINGER Z, et al. Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3 [J]. Journal of Solid State Chemistry, 1995, 114(1): 159-163. |
| [61] | KAGAN C R, MITZI D B, DIMITRAKOPOULOS C D. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors[J]. Science, 1999, 286(5441): 945-947. |
| [62] | LIU J, CHEN Y F, ZHOU J X, et al. Filterless near-infrared narrowband photodetectors based on mixed metal perovskite single crystals[J]. Advanced Optical Materials, 2024, 12(32): 2401544. |
| [63] | CHANG Z Z, LU Z J, DENG W, et al. Narrow-bandgap Sn-Pb mixed perovskite single crystals for high-performance near-infrared photodetectors[J]. Nanoscale, 2023, 15(10): 5053-5062. |
| [64] | LIU T H, WANG L X, YUAN Z Q, et al. Quasi-single-crystal tin halide perovskite films with high structural integrity for near-infrared imaging array enabling hidden object recognition[J]. Angewandte Chemie International Edition, 2025, 64(6): e202418470. |
| [65] | XIE J, ZHAO M, DONG Y Q, et al. Enabling robust broad-spectrum photodetection with ultra-high responsivity through vapor growth of 2D all-inorganic lead-free Cs2SnI6 perovskites[J]. Optical Materials, 2024, 153: 115561. |
| [66] | WANG X, BIAN Y S, WANG H, et al. Suppressed ion migration in tin halide perovskites for stable X-ray detectors with low dark current drift[J]. Laser & Photonics Reviews, 2025, 19(3): 2401310. |
| [67] | LIU G L, JIANG X Y, FENG W H, et al. Synergic electron and defect compensation minimizes voltage loss in lead-free perovskite solar cells[J]. Angewandte Chemie International Edition, 2023, 62(39): 202305551. |
| [68] | HE L T, GU H, LIU X L, et al. Efficient anti-solvent-free spin-coated and printed Sn-perovskite solar cells with crystal-based precursor solutions[J]. Matter, 2020, 2(1): 167-180. |
| [69] | HE D X, CHEN P, STEELE J A, et al. Homogeneous 2D/3D heterostructured tin halide perovskite photovoltaics[J]. Nature Nanotechnology, 2025. |
| [70] | MITZI D B, DIMITRAKOPOULOS C D, ROSNER J, et al. Hybrid field-effect transistor based on a low-temperature melt-processed channel layer[J]. Advanced Materials, 2002, 14(23): 1772-1776. |
| [71] | ZEIDELL A M, TYZNIK C, JENNINGS L, et al. Enhanced charge transport in hybrid perovskite field-effect transistors via microstructure control[J]. Advanced Electronic Materials, 2023, 9(10): 2300459. |
| [72] | YU W L, LI F, YU L Y, et al. Single crystal hybrid perovskite field-effect transistors[J]. Nature Communications, 2018, 9(1): 5354. |
| [73] | SHEN H Z, LI J Z, WANG H Z, et al. Two-dimensional lead-free perovskite (C6H5C2H4NH3)2CsSn2I7 with high hole mobility[J]. The Journal of Physical Chemistry Letters, 2019, 10(1): 7-12. |
| [74] | WANG H, CHAN C C S, CHU M, et al. Interlayer cross-linked 2D perovskite solar cell with uniform phase distribution and increased exciton coupling[J]. Solar RRL, 2020, 4(4): 1900578. |
| [1] | 萧岱桢, 高荣, 陈怡, 米启兮. 全无机锡钙钛矿CsSnBr3晶体的生长和电学、光学性能研究[J]. 人工晶体学报, 2025, 54(7): 1245-1255. |
| [2] | 喻超, 张博, 王琦琦, 王希, 胡于南, 梁小燕, 张继军, 闵嘉华, 王林军. 移动加热器法生长的CZT晶体内部点缺陷精细调控研究[J]. 人工晶体学报, 2025, 54(6): 960-969. |
| [3] | 曹晟, 张锋, 刘绍祥, 陈思凯, 赵杨, 石轩, 赵洪泉. Er掺杂WS2的制备及光电特性研究[J]. 人工晶体学报, 2023, 52(5): 849-856. |
| [4] | 武圆梦, 胡俊杰, 王淼, 易觉民, 张育民, 王建峰, 徐科. Fe掺杂GaN晶体非极性面的光学各向异性研究[J]. 人工晶体学报, 2022, 51(6): 996-1002. |
| [5] | 王欣月, 张兆诚, 黎智杰, 何婉婷, 温锦秀, 罗坚义, 唐秀凤, 王忆. 基底加热温度对ITO薄膜的性能影响研究[J]. 人工晶体学报, 2021, 50(5): 858-865. |
| [6] | 王一, 丁召, 魏节敏, 杨晨, 罗子江, 王继红, 郭祥. In原子在GaAs(001)表面的成核与扩散研究[J]. 人工晶体学报, 2020, 49(12): 2268-2273. |
| [7] | 李祯;杨得草;李尔波;岳建设. 光化学溶胶-凝胶制备PLZT铁电薄膜及其光电特性[J]. 人工晶体学报, 2019, 48(2): 321-325. |
| [8] | 童杨;王昆仑;刘媛媛;李延辉;宋淑梅;杨田林. 射频功率对ITZO薄膜结构、形貌及光电特性的影响[J]. 人工晶体学报, 2015, 44(9): 2338-2342. |
| [9] | 王何美;朱华;冯晓炜;况慧芸;王艳香. 衬底温度对硼掺杂ZnO薄膜微观结构及其光电特性的影响[J]. 人工晶体学报, 2015, 44(5): 1266-1270. |
| [10] | 黄成亮;李永波;张勇;王明;张塬昆;贾增民. 溅射时间对室温沉积ITO薄膜光电性能的影响[J]. 人工晶体学报, 2015, 44(4): 1051-1055. |
| [11] | 冯祝;万云芳. 溅射功率对ZnO∶Si透明导电薄膜性能的影响[J]. 人工晶体学报, 2013, 42(10): 2080-2086. |
| [12] | 李寒松;李焕勇. CVT一步生长的ZnSe单晶的光电特性研究[J]. 人工晶体学报, 2012, 41(2): 290-293. |
| [13] | 江锡顺;万东升;宋学萍;孙兆奇. 退火温度对ITO薄膜微结构和光电特性的影响[J]. 人工晶体学报, 2011, 40(6): 1536-1540. |
| [14] | 陈肖静;王永谦;朱拓;李果华;张光春. 射频溅射功率对ZnO透明导电薄膜光电性能的影响[J]. 人工晶体学报, 2009, 38(2): 354-357. |
| [15] | 苗彬彬;王君;陈江涛;闫鹏勋. 铁电PLZT薄膜的最新研究进展[J]. 人工晶体学报, 2006, 35(3): 539-544. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS