[1] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58. [2] AJAYAN P M, LIJIMA S. Capillarity-induced filling of carbon nanotubes[J]. Nature, 1993, 361(6410): 333-334. [3] IIJIMA S, ICHIHASHI T. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature, 1993, 363(6430): 603-605. [4] 林毓韬,徐 涛,柳清菊.碳纳米管及其掺杂氧化物半导体气敏传感器[J].功能材料,2011,42(7):1159-1162. LIN Y T, XU T, LIU Q J. Carbon nanotubes gas sensors and oxide semiconductor doping with carbon nanotubes gas sensors[J]. Journal of Functional Materials, 2011, 42(7): 1159-1162(in Chinese). [5] VICHCHULADA P, LIPSCOMB L D, ZHANG Q, et al. Incorporation of single-walled carbon nanotubes into functional sensor applications[J]. Journal of Nanoscience and Nanotechnology, 2009, 9(4): 2189-2200. [6] ZHOU C. Modulated chemical doping of individual carbon nanotubes[J]. Science, 2000, 290(5496): 1552-1555. [7] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. [8] CUNCI L, RAO C V, VELEZ C, et al. Graphene-supported Pt, Ir, and Pt-Ir nanoparticles as electrocatalysts for the oxidation of ammonia[J]. Electrocatalysis, 2013, 4(1): 61-69. [9] ZHANG M L, SU H C, RHEEM Y, et al. A rapid room-temperature NO2 sensor based on tellurium-SWNT hybrid nanostructures[J]. The Journal of Physical Chemistry C, 2012, 116(37): 20067-20074. [10] CUI S M, PU H H, LU G H, et al. Fast and selective room-temperature ammonia sensors using silver nanocrystal-functionalized carbon nanotubes[J]. ACS Applied Materials & Interfaces, 2012, 4(9): 4898-4904. [11] ZHANG Q L, ZHANG Y W, GAO Z H, et al. A facile synthesis of platinum nanoparticle decorated graphene by one-step γ-ray induced reduction for high rate supercapacitors[J]. J Mater Chem C, 2013, 1(2): 321-328. [12] HERRERA GONZÁLEZ A M, CALDERA VILLALOBOS M, GARCÍA-SERRANO J, et al. Polyelectrolytes with sulfonic acid groups useful in the synthesis and stabilization of Au and Ag nanoparticles[J]. Designed Monomers and Polymers, 2016, 19(4): 330-339. [13] CHUN Y S, SHIN J Y, SONG C E, et al. Palladium nanoparticles supported onto ionic carbon nanotubes as robust recyclable catalysts in an ionic liquid[J]. Chemical Communications (Cambridge, England), 2008(8): 942-944. [14] ZOU J L, HUBBLE L J, IYER K S, et al. Bare palladium nano-rosettes for real-time high-performance and facile hydrogen sensing[J]. Sensors and Actuators B: Chemical, 2010, 150(1): 291-295. [15] CHIN S F, IYER K S, RASTON C L, et al. Size selective synthesis of superparamagnetic nanoparticles in thin fluids under continuous flow conditions[J]. Advanced Functional Materials, 2008, 18(6): 922-927. [16] SISOEV G M, MATAR O K, LAWRENCE C J. Gas absorption into a wavy film flowing over a spinning disc[J]. Chemical Engineering Science, 2005, 60(7): 2051-2060. [17] GAO L Z, KIWI-MINSKER L, RENKEN A. Growth of carbon nanotubes and microfibers over stainless steel mesh by cracking of methane[J]. Surface and Coatings Technology, 2008, 202(13): 3029-3042. [18] BURNS J R, RAMSHAW C, JACHUCK R J. Measurement of liquid film thickness and the determination of spin-up radius on a rotating disc using an electrical resistance technique[J]. Chemical Engineering Science, 2003, 58(11): 2245-2253. [19] SWAMINATHANIYER K, NORRET M, DALGARNO S, et al. Loading molecular hydrogen cargo within viruslike nanocontainers[J]. Angewandte Chemie International Edition, 2008, 47(34): 6362-6366. [20] LI L, HE S J, LIU M M, et al. Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature[J]. Analytical Chemistry, 2015, 87(3): 1638-1645. [21] RIEDEL J, BERTHOLD M, GUTH U. Pyrolytic deposited graphite electrodes for voltammetric sensors: an alternative to nano structured electrodes[J]. Sensors and Actuators A: Physical, 2016, 241: 212-215. |