[1] CHEN H Y, SAVVIDES N. Eutectic microstructure and thermoelectric properties of Mg2Sn[J]. Journal of Electronic Materials, 2010, 39(9): 1792-1797. [2] CHEN H Y, SAVVIDES N. High quality Mg2Sn crystals prepared by RF induction melting[J]. Journal of Crystal Growth, 2010, 312(16/17): 2328-2334. [3] SONG R B, AIZAWA T, SUN J Q. Synthesis of Mg2Si1-xSnx solid solutions as thermoelectric materials by bulk mechanical alloying and hot pressing[J]. Materials Science and Engineering: B, 2007, 136(2/3): 111-117. [4] LIU W, TANG X F, LI H, et al. Enhanced thermoelectric properties of n-type Mg2.16(Si0.4Sn0.6)1-ySby due to nano-sized Sn-rich precipitates and an optimized electron concentration[J]. Journal of Materials Chemistry, 2012, 22(27): 13653. [5] ZHANG X, LU Q M, WANG L, et al. Preparation of Mg2Si1-xSnx by induction melting and spark plasma sintering, and thermoelectric properties[J]. Journal of Electronic Materials, 2010, 39(9): 1413-1417. [6] CHEN H Y, SAVVIDES N, DASGUPTA T, et al. Electronic and thermal transport properties of Mg2Sn crystals containing finely dispersed eutectic structures[J]. Physica Status Solidi (a), 2010, 207(11): 2523-2531. [7] ZAITSEV V K, FEDOROV M I, GURIEVA E A, et al. Highly effective Mg2Si1-xSnx thermoelectrics[J]. Physical Review B, 2006, 74(4): 045207. [8] LE-QUO C H, LACOSTE A, HLIL E K, et al. Thin films of thermoelectric compound Mg2Sn deposited by co-sputtering assisted by multi-dipolar microwave plasma[J]. Journal of Alloys and Compounds, 2011, 509(41): 9906-9911. [9] DE BOOR J, SAPARAMADU U, MAO J, et al. Thermoelectric performance of Li doped, p-type Mg2(Ge, Sn) and comparison with Mg2(Si, Sn)[J]. Acta Materialia, 2016, 120: 273-280. [10] DE BOOR J, DASGUPTA T, KOLB H, et al. Microstructural effects on thermoelectric efficiency: a case study on magnesium silicide[J]. Acta Materialia, 2014, 77: 68-75. [11] SANKHLA A, PATIL A, KAMILA H, et al. Mechanical alloying of optimized Mg2(Si, Sn) solid solutions: understanding phase evolution and tuning synthesis parameters for thermoelectric applications[J]. ACS Applied Energy Materials, 2018, 1(2): 531-542. [12] TANI J I, KIDO H. Impurity doping into Mg2Sn: a first-principles study[J]. Physica B: Condensed Matter, 2012, 407(17): 3493-3498. [13] 刘娜娜,宋仁伯,孙翰英,等.Mg2Sn电子结构及热力学性质的第一性原理计算[J].物理学报,2008,57(11):7145-7150. LIU N N, SONG R B, SUN H Y, et al. The electronic structure and thermodynamic properties of Mg2Sn from first-principles calculations[J]. Acta Physica Sinica, 2008, 57(11): 7145-7150(in Chinese). [14] REN H, HU W C, LI D J, et al. Atomic relaxation, stability and electronic properties of Mg2Sn (100) surfaces from ab-initio calculations[J]. Journal of Magnesium and Alloys, 2016, 4(1): 62-67. [15] JIN Y R, FENG Z Z, YE L Y, et al. Mg2Sn: a potential mid-temperature thermoelectric material[J]. RSC Advances, 2016, 6(54): 48728-48736. [16] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 2005, 220(5/6): 567-570. [17] WYCKOFF R W G. Fluorite structure Crystal Structures[M]. New York: Interscience Publishers, 1963, 1: 239-444. [18] DAVIS L C, WHITTEN W B, DANIELSON G C. Elastic constants and calculated lattice vibration frequencies of Mg2Sn[J]. Journal of Physics and Chemistry of Solids, 1967, 28(3): 439-447. [19] GANESHAN S, SHANG S L, ZHANG H, et al. Elastic constants of binary Mg compounds from first-principles calculations[J]. Intermetallics, 2009, 17(5): 313-318. [20] ZHOU D W, LIU J S, XU S H, et al. Thermal stability and elastic properties of Mg2X (X=Si, Ge, Sn, Pb) phases from first-principle calculations[J]. Computational Materials Science, 2012, 51(1): 409-414. [21] ONG K P, SINGH D J, WU P. Analysis of the thermoelectric properties of n-type ZnO[J]. Physical Review B, 2011, 83(11): 115110. |