[1] YU Y, GU C Z, XU L F, et al. Ab initiostructural characterization of a hydrogen-covered diamond (001) surface[J]. Physical Review B, 2004, 70(12): 125423. [2] KAWASHIMA H, NOGUCHI H, MATSUMOTO T, et al. Electronic properties of diamond Schottky barrier diodes fabricated on silicon-based heteroepitaxially grown diamond substrates[J]. Applied Physics Express, 2015, 8(10): 104103. [3] UEDA K, KAWAMOTO K, ASANO H. High-temperature and high-voltage characteristics of Cu/diamond Schottky diodes[J]. Diamond and Related Materials, 2015, 57: 28-31. [4] IACOBUCCI S, ALIPPI P, CALVANI P, et al. Electronic structure of hydrogenated diamond: microscopical insight into surface conductivity[J]. Physical Review B, 2016, 94(4): 045307. [5] CUI J B, RISTEIN J, LEY L. Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface[J]. Physical Review Letters, 1998, 81(2): 429-432. [6] TIWARI A K, GOSS J P, BRIDDON P R, et al. Unexpected change in the electron affinity of diamond caused by the ultra-thin transition metal oxide films[J]. EPL (Europhysics Letters), 2014, 108(4): 46005. [7] TIWARI A K, GOSS J P, BRIDDON P R, et al. Effect of different surface coverages of transition metals on the electronic and structural properties of diamond[J]. Physica Status Solidi (a), 2012, 209(9): 1697-1702. [8] YANG H X, XU L F, GU C Z, et al. First-principles study of oxygenated diamond (001) surfaces with and without hydrogen[J]. Applied Surface Science, 2007, 253(9): 4260-4266. [9] O′DONNELL K M, MARTIN T L, EDMONDS M T, et al. Photoelectron emission from lithiated diamond[J]. Physica Status Solidi (a), 2014, 211(10): 2209-2222. [10] GEIS M W, TWICHELL J C, MACAULAY J, et al. Electron field emission from diamond and other carbon materials after H2, O2, and Cs treatment[J]. Applied Physics Letters, 1995, 67(9): 1328-1330. [11] O′DONNELL K M, EDMONDS M T, RISTEIN J, et al. Diamond surfaces with air-stable negative electron affinity and giant electron yield enhancement[J]. Advanced Functional Materials, 2013, 23(45): 5608-5614. [12] VERONA C, CICCOGNANI W, COLANGELI S, et al. Comparative investigation of surface transfer doping of hydrogen terminated diamond by high electron affinity insulators[J]. Journal of Applied Physics, 2016, 120(2): 025104. [13] SCHENK A K, SEAR M J, TADICH A, et al. Oxidation of the silicon terminated (100) diamond surface[J]. Journal of Physics Condensed Matter, 2016, 29(2): 025003. [14] 吴孔平,孙昌旭,马文飞,等.铝-金刚石界面电子特性与界面肖特基势垒的杂化密度泛函理论HSE06的研究[J].物理学报,2017,66(8):088102. WU K P, SUN C X, MA W F, et al. Interface electronic structure and the Schottky barrier at Al-diamond interface: hybrid density functional theory HSE06 investigation[J]. Acta Physica Sinica, 2017, 66(8): 088102(in Chinese). [15] GUO H B, QI Y, LI X D. Adhesion at diamond/metal interfaces: a density functional theory study[J]. Journal of Applied Physics, 2010, 107(3): 033722. [16] QI T, DONG L J, QIAO Y, et al. Enhanced electron field emission of Cu implanted microcrystalline diamond films after annealing[J]. Vacuum, 2016, 134: 141-149. [17] 简小刚,杨培康,黄 新,等.硼掺杂和氮掺杂金刚石的吸附生长过程研究[J].人工晶体学报,2020,49(4):592-599. JIAN X G, YANG P K, HUANG X, et al. Study on the adsorption growth process of B-doped and N-doped diamonds[J]. Journal of Synthetic Crystals, 2020, 49(4): 592-599(in Chinese). [18] CEPERLEY D M, ALDER B J. Ground state of the electron gas by a stochastic method[J]. Physical Review Letters, 1980, 45(7): 566-569. [19] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192. [20] 吴孔平,慈能达,汤 琨,等.Cd对纤锌矿ZnO极化特性的影响以及Zn0.75Cd0.25O/ZnO界面能带偏差的第一性原理研究[J].人工晶体学报,2015,44(9):2577-2582. WU K P, CI N D, TANG K, et al. First-principle study on effect of Cd on polarization of wurtzite structure ZnO and band offset at Zn0.75Cd0.25O/ZnO interfaces[J]. Journal of Synthetic Crystals, 2015, 44(9): 2577-2582(in Chinese). [21] VAN DE WALLE C G, MARTIN R M. Theoretical study of band offsets at semiconductor interfaces[J]. Physical Review B, Condensed Matter, 1987, 35(15): 8154-8165. [22] SQUE S J, JONES R, BRIDDON P R. Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces[J]. Physical Review B, 2006, 73(8): 085313. [23] JIA Y, ZHU W G, WANG E G, et al. Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces[J]. Phys Rev Lett, 2005, 94: 086101. [24] 谢希德,资 剑.金属在半导体表面上的吸附[J].物理,1992,21(11):641-646. XIE X D, ZI J. Adsorption of metals on semiconductor surfaces[J]. Physics, 1992, 21(11): 641-646(in Chinese). [25] GOLUBEVA E N, ZUBANOVA E M, ZHIDOMIROV G M. The nature of Cu-C bond and copper oxidation state in chloroorganocuprates [CuClnCH3]2[J]. Journal of Physical Organic Chemistry, 2013, 26(9): 724-729. [26] WU K P, MA W F, SUN C X, et al. Two dimensional hole gas induced by the heterointerface of nonpolar plane AlN(1-100)/H-terminated (100) diamond[J]. Computational Materials Science, 2018, 145: 191-196. [27] WU K P, LIAO M Y, SANG L W, et al. A density functional study of the effect of hydrogen on electronic properties and band discontinuity at anatase TiO2/diamond interface[J]. Journal of Applied Physics, 2018, 123(16): 161599. [28] DELCHAR T A. Oxygen chemisorption on copper single crystals[J]. Surface Science, 1971, 27(1): 11-20. [29] BAUMANN P K, NEMANICH R J. Characterization of copper-diamond (100), (111), and (110) interfaces: electron affinity and Schottky barrier[J]. Physical Review B, 1998, 58(3): 1643-1654. [30] BAUMANN P K, NEMANICH R J. Electron affinity and Schottky barrier height of metal-diamond (100), (111), and (110) interfaces[J]. Journal of Applied Physics, 1998, 83(4): 2072-2082. |