[1] ZHONG J W, YANG X F, WU Z L, et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol[J]. Chemical Society Reviews, 2020, 49(5): 1385-1413. [2] ALPER E, YUKSEL ORHAN O. CO2 utilization: developments in conversion processes[J]. Petroleum, 2017, 3(1): 109-126. [3] ROY S, CHEREVOTAN A, PETER S C. Thermochemical CO2 hydrogenation to single carbon products: scientific and technological challenges[J]. ACS Energy Letters, 2018, 3(8): 1938-1966. [4] LI W H, WANG H Z, JIANG X, et al. A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts[J]. RSC Advances, 2018, 8(14): 7651-7669. [5] ARESTA M, DIBENEDETTO A, ANGELINI A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2[J]. Chemical Reviews, 2014, 114(3): 1709-1742. [6] GANESH I. Conversion of carbon dioxide into methanol-a potential liquid fuel: fundamental challenges and opportunities (a review)[J]. Renewable and Sustainable Energy Reviews, 2014, 31: 221-257. [7] VERHELST S, TURNER J W, SILEGHEM L, et al. Methanol as a fuel for internal combustion engines[J]. Progress in Energy and Combustion Science, 2019, 70: 43-88. [8] DANG S S, YANG H Y, GAO P, et al. A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation[J]. Catalysis Today, 2019, 330: 61-75. [9] MÜLLER K, MOKRUSHINA L, ARLT W. Thermodynamic constraints for the utilization of CO2[J]. Chemie Ingenieur Technik, 2014, 86(4): 497-503. [10] KISS A A, PRAGT J J, VOS H J, et al. Novel efficient process for methanol synthesis by CO2 hydrogenation[J]. Chemical Engineering Journal, 2016, 284: 260-269. [11] YANG H Y, ZHANG C, GAO P, et al. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons[J]. Catalysis Science & Technology, 2017, 7(20): 4580-4598. [12] ZHAO Y F, YANG Y, MIMS C, et al. Insight into methanol synthesis from CO2 hydrogenation on Cu(111): complex reaction network and the effects of H2O[J]. Journal of Catalysis, 2011, 281(2): 199-211. [13] MEN Y L, LIU Y, WANG Q Q, et al. Highly dispersed Pt-based catalysts for selective CO2 hydrogenation to methanol at atmospheric pressure[J]. Chemical Engineering Science, 2019, 200: 167-175. [14] TSOUKALOU A, ABDALA P M, ARMUTLULU A, et al. Operando X-ray absorption spectroscopy identifies a monoclinic ZrO2: in solid solution as the active phase for the hydrogenation of CO2 to methanol[J]. ACS Catalysis, 2020, 10(17): 10060-10067. [15] HAN Z, TANG C Z, SHA F, et al. CO2 hydrogenation to methanol on ZnO-ZrO2 solid solution catalysts with ordered mesoporous structure[J]. Journal of Catalysis, 2021, 396: 242-250. [16] KATTEL S, YU W T, YANG X F, et al. CO2 hydrogenation over oxide-supported PtCo catalysts: the role of the oxide support in determining the product selectivity[J]. Angewandte Chemie, 2016, 128(28): 8100-8105. [17] FIORDALISO E M, SHARAFUTDINOV I, CARVALHO H W P, et al. Corrections to “intermetallic GaPd2 nanoparticles on SiO2 for low-pressure CO2 hydrogenation to methanol: catalytic performance and in situ characterization”[J]. ACS Catalysis, 2018, 8(2): 938. [18] LIANG B L, MA J G, SU X, et al. Investigation on deactivation of Cu/ZnO/Al2O3 catalyst for CO2 hydrogenation to methanol[J]. Industrial & Engineering Chemistry Research, 2019, 58(21): 9030-9037. [19] WANG G C, ZENG L Y, CAO J X, et al. Highly selective conversion of CO2 to hydrocarbons over composite catalysts of ZnO-ZrO2 and SAPO-34[J]. Microporous and Mesoporous Materials, 2019, 284: 133-140. [20] WANG J, LI G, LI Z, et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Science Advances, 2017, 3(10): e1701290. [21] YANG C S, PEI C L, LUO R, et al. Strong electronic oxide-support interaction over In2O3/ZrO2 for highly selective CO2 hydrogenation to methanol[J]. Journal of the American Chemical Society, 2020, 142(46): 19523-19531. [22] FENG W H, YU M M, WANG L J, et, al. Insights into bimetallic oxide synergy during carbon dioxide hydrogenation to methanol and dimethyl ether over GaZrOx oxide catalysts[J]. ACS Catalysis, 2021, 11(8): 4704-4711. [23] WANG J J, TANG C Z, LI G N, et al. High-performance MaZrOx (Ma=Cd, Ga) solid-solution catalysts for CO2 hydrogenation to methanol[J]. ACS Catalysis, 2019, 9(11): 10253-10259. [24] ZHANG X B, ZHANG G H, LIU W, et al. Reaction-driven surface reconstruction of ZnAl2O4 boosts the methanol selectivity in CO2 catalytic hydrogenation[J]. Applied Catalysis B: Environmental, 2021, 284: 119700. [25] LIU X L, WANG M H, ZHOU C, et al. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34[J]. Chemical Communications, 2018, 54(2): 140-143. [26] SUN K H, FAN Z G, YE J Y, et al. Hydrogenation of CO2 to methanol over In2O3 catalyst[J]. Journal of CO2 Utilization, 2015, 12: 1-6. [27] CHEN A P, SU Q, HAN H, et al. Metal oxide nanocomposites: a perspective from strain, defect, and interface[J]. Advanced Materials, 2019, 31(4): 1803241. [28] YU H B, WANG M D, ZHOU J H, et al. Microreactor-assisted synthesis of α-alumina nanoparticles[J]. Ceramics International, 2020, 46(9): 13272-13281. [29] YOU L, CAO J X, LIU F. A novel microchannel synthesis strategy for continuous fabrication of nanosized γ-CuI and their photocatalytic performance[J]. Industrial & Engineering Chemistry Research, 2019, 58(25): 10941-10950. [30] WANG X X, WANG Y Z, YANG C L, et al. A novel microreaction strategy to fabricate superior hybrid zirconium and zinc oxides for methanol synthesis from CO2[J]. Applied Catalysis A: General, 2020, 595: 117507. [31] HUMPHREYS C J. The significance of Bragg's law in electron diffraction and microscopy, and Bragg's second law[J]. Acta Crystallographica Section A, 2013, 69(1): 45-50. [32] SHUNMUGA SUNDARAM P, SANGEETHA T, RAJAKARTHIHAN S, et al. XRD structural studies on cobalt doped zinc oxide nanoparticles synthesized by coprecipitation method: Williamson-Hall and size-strain plot approaches[J]. Physica B: Condensed Matter, 2020, 595: 412342. [33] CHEN Y D, WANG H, QIN Z X, et al. TixCe1-xO2 nanocomposites: a monolithic catalyst for the direct conversion of carbon dioxide and methanol to dimethyl carbonate[J]. Green Chemistry, 2019, 21(17): 4642-4649. [34] CHOUDHURY B, CHETRI P, CHOUDHURY A. Annealing temperature and oxygen-vacancy-dependent variation of lattice strain, band gap and luminescence properties of CeO2 nanoparticles[J]. Journal of Experimental Nanoscience, 2015, 10(2): 103-114. [35] DU F L, WANG N, ZHANG D M, et al. Preparation, characterization and infrared emissivity study of Ce-doped ZnO films[J]. Journal of Rare Earths, 2010, 28(3): 391-395. [36] SHEN C Y, SUN K H, ZHANG Z T, et al. Highly active Ir/In2O3 catalysts for selective hydrogenation of CO2 to methanol: experimental and theoretical studies[J]. ACS Catalysis, 2021, 11(7): 4036-4046. [37] YE J Y, LIU C J, MEI D H, et al. Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): a DFT study[J]. ACS Catalysis, 2013, 3(6): 1296-1306. [38] ZHANG W, MA X L, XIAO H, et al. Mechanistic investigations on thermal hydrogenation of CO2 to methanol by nanostructured CeO2(100): the crystal-plane effect on catalytic reactivity[J]. The Journal of Physical Chemistry C, 2019, 123(18): 11763-11771. |