[1] ZHANG X F, ELSAYED I, SONG X Z, et al. Microporous carbon nanoflakes derived from biomass cork waste for CO2 capture[J]. Science of the Total Environment, 2020, 748: 142465. [2] JAFARI B, RAHIMI M R, GHAEDI M, et al. CO2 capture by amine-based aqueous solution containing atorvastatin functionalized mesocellular silica foam in a counter-current rotating packed bed: central composite design modeling[J]. Chemical Engineering Research and Design, 2018, 129: 64-74. [3] 刘勇军,巩梦丹,王雪娇,等.有机胺改性多孔材料制备固体胺二氧化碳吸附剂的研究进展[J].四川化工,2014,17(5):25-28. LIU Y J, GONG M D, WANG X J, et al. The research progress of solid amine CO2 adsorbent prepared by amine-modified porous materials[J]. Sichuan Chemical Industry, 2014, 17(5): 25-28(in Chinese). [4] VENNA S R, CARREON M A. Metal organic framework membranes for carbon dioxide separation[J]. Chemical Engineering Science, 2015, 124: 3-19. [5] WANG Y S, DU T, SONG Y L, et al. Amine-functionalized mesoporous ZSM-5 zeolite adsorbents for carbon dioxide capture[J]. Solid State Sciences, 2017, 73: 27-35. [6] WANG X, GUO Q J, ZHAO J, et al. Mixed amine-modified MCM-41 sorbents for CO2 capture[J]. International Journal of Greenhouse Gas Control, 2015, 37: 90-98. [7] WANG Y, YANG R T. Template removal from SBA-15 by ionic liquid for amine grafting: applications to CO2 capture and natural gas desulfurization[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(22): 295-304. [8] GHOLIDOUST A, ATKINSON J D, HASHISHO Z. Enhancing CO2 adsorption via amine-impregnated activated carbon from oil sands coke[J]. Energy & Fuels, 2017, 31(2): 1756-1763. [9] JIANG X, KONG Y, ZHAO Z Y, et al. Spherical amine grafted silica aerogels for CO2 capture[J]. RSC Advances, 2020, 10(43): 25911-25917. [10] LIU Y M, SHI J J, CHEN J, et al. Dynamic performance of CO2 adsorption with tetraethylenepentamine-loaded KIT-6[J]. Microporous and Mesoporous Materials, 2010, 134(1/2/3): 16-21. [11] WEI L, JING Y, GAO Z M, et al. Development of a pentaethylenehexamine-modified solid support adsorbent for CO2 capture from model flue gas[J]. Chinese Journal of Chemical Engineering, 2015, 23(2): 366-371. [12] FUJIKI J, YAMADA H, YOGO K. Enhanced adsorption of carbon dioxide on surface-modified mesoporous silica-supported tetraethylenepentamine: role of surface chemical structure[J]. Microporous and Mesoporous Materials, 2015, 215: 76-83. [13] 褚效中,周守勇,张兴振,等.胺基功能化凹土材料制备及其对CO2和N2吸附性能研究[C]//第十八届全国二氧化硫、氮氧化物、汞污染防治暨细颗粒物(PM2.5)治理技术研讨会论文集.洛阳,2014:100-104. CHU X Z, ZHOU S Y, ZHANG X Z, et al. Preparation of amine based functionalized attapulgite materials and their adsorption properties for CO2 and N2[C]//Proceedings of the 18th National Symposium on prevention and control of sulfur dioxide, nitrogen oxides and mercury pollution and fine particulate matter (PM2.5) treatment technology. Luoyang, 2014: 100-104(in Chinese). [14] 赵唯君,张华丽,严春杰,等.乙醇胺和N,N-二甲基乙醇胺改性埃洛石对CO2的吸附行为[J].武汉工程大学学报,2017,39(5):420-426. ZHAO W J, ZHANG H L, YAN C J, et al. Adsorption behavior of carbon dioxide with halloysite modified by ethanol amineand N, N-dimethyl ethanolamine[J]. Journal of Wuhan Institute of Technology, 2017, 39(5): 420-426(in Chinese). [15] CHEN Y H, LU D L. Amine modification on kaolinites to enhance CO2 adsorption[J]. Journal of Colloid and Interface Science, 2014, 436: 47-51. [16] LIU Q, LI F, LU H, et al. Enhanced dispersion stability and heavy metal ion adsorption capability of oxidized starch nanoparticles[J]. Food Chemistry, 2018, 242: 256-263. [17] SHABAN M, SAYED M I, SHAHIEN M G, et al. Adsorption behavior of inorganic- and organic-modified kaolinite for Congo red dye from water, kinetic modeling, and equilibrium studies[J]. Journal of Sol-Gel Science and Technology, 2018, 87(2): 427-441. [18] YADAV V B, CADI R, KALRA S. Adsorption bentonite carbon nanotube (CNT) heavy metals kaolinite montmorillonite water pollution [J]. Journal of environmental management, 2018, 232: 803-817. [19] HOUNFODJI J W, KANHOUNNON W G, KPOTIN G, et al. Molecular insights on the adsorption of some pharmaceutical residues from wastewater on kaolinite surfaces[J]. Chemical Engineering Journal, 2021, 407: 127176. [20] ZHANG Y M, LIU Q F, ZHANG S L, et al. Characterization of kaolinite/styrene butadiene rubber composite: mechanical properties and thermal stability[J]. Applied Clay Science, 2016, 124/125: 167-174. [21] SPENCE A, KELLEHER B P. FT-IR spectroscopic analysis of kaolinite-microbial interactions[J]. Vibrational Spectroscopy, 2012, 61: 151-155. [22] OUYANG J, GU W, ZHANG Y, et al. CO2 capturing performances of millimeter scale beads made by tetraethylenepentamine loaded ultra-fine palygorskite powders from jet pulverization[J]. Chemical Engineering Journal, 2018, 341: 432-440. [23] 王晓光,刘 岱,陈绍云,等.五乙烯六胺改性金属有机骨架材料MIL-101(Cr)对CO2的吸附性能[J].燃料化学学报,2017,45(4):484-490. WANG X G, LIU D, CHEN S Y, et al. Performance of pentaethylenehexamine modified MIL-101(Cr) metal-organic framework in CO2 adsorption[J]. Journal of Fuel Chemistry and Technology, 2017, 45(4): 484-490(in Chinese). [24] 冯星星,谢 菁,胡庚申,等.五乙烯六胺修饰的MCF基吸附剂的制备及其CO2吸附性能研究[J].物理化学学报,2013,29(6):1266-1272. FENG X X, XIE J, HU G S, et al. Preparation of pentaethylenehexamine-functionalized mesocellular silica foams and their application for CO2 adsorption[J]. Acta Physico-Chimica Sinica, 2013, 29(6): 1266-1272(in Chinese). [25] 李天天.基于高岭土的高比表面积介孔材料的无模板法制备新工艺[D].武汉:中国地质大学,2016. LI T T. Novel approaches for template-free synthesis of Kaolin-derived mesoporous materials with large specific surface areas[D]. Wuhan: China University of Geosciences, 2016(in Chinese). [26] 王 正,郑林会,牛三鑫,等.高比表面积偏高岭土制备及其对Cr(Ⅵ)、Ni(Ⅱ)吸附性能研究[J].应用化工,2020,49(3):624-627. WANG Z, ZHENG L H, NIU S X, et al. Preparation of metakaolin of high specific surface area and its adsorption properties for Cr(Ⅵ) and Ni(Ⅱ)[J]. Applied Chemical Industry, 2020, 49(3): 624-627(in Chinese). [27] HU X Y, LIU L B, LUO X, et al. A review of N-functionalized solid adsorbents for post-combustion CO2 capture[J]. Applied Energy, 2020, 260: 114244. [28] YAN X L, ZHANG L, ZHANG Y, et al. Amine-modified SBA-15: effect of pore structure on the performance for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2011, 50(6): 3220-3226. |