人工晶体学报 ›› 2021, Vol. 50 ›› Issue (9): 1780-1795.
开翠红1,2, 王蓉2, 杨德仁1,2, 皮孝东1,2
收稿日期:
2021-06-08
出版日期:
2021-09-15
发布日期:
2021-10-15
通讯作者:
皮孝东,博士,教授。E-mail:xdpi@zju.edu.cn
作者简介:
开翠红(1991—),女,山东省人,博士。E-mail:kaicuihong@zju.edu.cn
基金资助:
KAI Cuihong1,2, WANG Rong2, YANG Deren1,2, PI Xiaodong1,2
Received:
2021-06-08
Online:
2021-09-15
Published:
2021-10-15
摘要: 宽禁带半导体具备禁带宽度大、电子饱和飘移速度高、击穿场强大等优势,是制备高功率密度、高频率、低损耗电子器件的理想材料。碳化硅(SiC)材料具有热导率高、化学稳定性好、耐高温等优点,在SiC衬底上外延宽禁带半导体材料,对充分发挥宽禁带半导体材料的优势,并提升宽禁带半导体电子器件的性能具有重要意义。得益于SiC衬底质量持续提升及成本不断降低,基于SiC衬底的宽禁带半导体电子市场占比呈现逐年增加的态势。在SiC衬底上外延生长高质量的宽禁带半导体材料是提高宽禁带半导体电子器件性能及可靠性的关键瓶颈。本文综述了近年来国内外研究者们在SiC衬底上外延SiC、氮化镓(GaN)、氧化镓(Ga2O3)所取得的研究进展,并展望了SiC衬底上宽禁带半导体外延的发展及应用前景。
中图分类号:
开翠红, 王蓉, 杨德仁, 皮孝东. 基于碳化硅衬底的宽禁带半导体外延[J]. 人工晶体学报, 2021, 50(9): 1780-1795.
KAI Cuihong, WANG Rong, YANG Deren, PI Xiaodong. Epitaxy of Wide Bandgap Semiconductors on Silicon Carbide Substrate[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(9): 1780-1795.
[1] ROSKER M J. The present state of the art of wide-bandgap semiconductors and their future[C]//2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium. June 3-5, 2007, Honolulu, HI, USA. IEEE, 2007: 159-162. [2] ZHANG D G, LI Z H, YANG Q K, et al. Research on epitaxial of 250 nm high quality GaN HEMT based on AlN surface leveling technology[J]. Applied Surface Science, 2020, 509: 145339. [3] PEARTON S J, YANG J C, CARY P H, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301. [4] LI D B, JIANG K, SUN X J, et al. AlGaN photonics: recent advances in materials and ultraviolet devices[J]. Advances in Optics and Photonics, 2018, 10(1): 43-110. [5] MISHRA U K, PARIKH P, WU Y F. AlGaN/GaN HEMTs-an overview of device operation and applications[J]. Proceedings of the IEEE, 2002, 90(6): 1022-1031. [6] CHO L W, LEE B, LEE K, et al. Luminescence properties of InGaN/GaN green light-emitting diodes with Si-doped graded short-period superlattice[J]. Journal of Nanoscience and Nanotechnology, 2021, 21(11): 5648-5652. [7] Yole.5G: take it or leave it? [EB/OL] (2021-06-18). http://www.yole.fr/2021_press_releases.aspx [8] 尼 曼.半导体物理与器件[M].赵毅强,姚素英,解晓东等译.第三版.北京:电子工业出版社,2005:233-233. Neamen D A. Semiconductor physics and devices[M].ZHAO Y Q, YAO S Y, XIE X D, et al. translated. 3rd ed. Beijing: Electronic Industry Press 2005:233-233(in Chinese). [9] 郝 跃, 彭 军,杨银堂.碳化硅宽带隙半导体技术[M].北京:科学出版社,2000:11. HAO Y, PENG J, YANG Y T. Silicon carbide broadband gap semiconductor technology[M]. Beijing: Science Press, 2000: 11(in Chinese). [10] SVERDLOV B N, MARTIN G A, MORKOÇ H, et al. Formation of threading defects in GaN wurtzite films grown on nonisomorphic substrates[J]. Applied Physics Letters, 1995, 67(14): 2063-2065. [11] METCALFE G D, SHEN H, WRABACK M, et al. Enhanced terahertz radiation from high stacking fault density nonpolar GaN[J]. Applied Physics Letters, 2008, 92(24): 241106. [12] CHAKRABORTY A, HASKELL B A, KELLER S, et al. Demonstration of nonpolarm-plane InGaN/GaN light-emitting diodes on free-standingm-plane GaN substrates[J]. Japanese Journal of Applied Physics, 2005, 44(5): L173-L175. [13] DAVYDOV V Y, AVERKIEV N S, GONCHARUK I N, et al. Raman and photoluminescence studies of biaxial strain in GaN epitaxial layers grown on 6H-SiC[J]. Journal of Applied Physics, 1997, 82(10): 5097-5102. [14] LIN M E, STRITE S, AGARWAL A, et al. GaN grown on hydrogen plasma cleaned 6H-SiC substrates[J]. Applied Physics Letters, 1993, 62(7): 702-704. [15] LIN M E, SVERDLOV B, ZHOU G L, et al. A comparative study of GaN epilayers grown on sapphire and SiC substrates by plasma-assisted molecular-beam epitaxy[J]. Applied Physics Letters, 1993, 62(26): 3479-3481. [16] CRAVEN M D, CHAKRABORTY A, IMER B, et al. Structural and electrical characterization of a-plane GaN grown on a-plane SiC[J]. Physica Status Solidi (c), 2003(7): 2132-2135. [17] CRAVEN M D, WU F, CHAKRABORTY A, et al. Microstructural evolution of a-plane GaN grown on a-plane SiC by metalorganic chemical vapor deposition[J]. Applied Physics Letters, 2004, 84(8): 1281-1283. [18] ZHANG H F, PASKOV P P, KORDINA O, et al. N-polar AlN nucleation layers grown by hot-wall MOCVD on SiC: effects of substrate orientation on the polarity, surface morphology and crystal quality[J]. Physica B: Condensed Matter, 2020, 580: 411819. [19] KOLESKE D D, HENRY R L, TWIGG M E, et al. Influence of AlN nucleation layer temperature on GaN electronic properties grown on SiC[J]. Applied Physics Letters, 2002, 80(23): 4372-4374. [20] NARANG K, BAG R K, SINGH V K, et al. Improvement in surface morphology and 2DEG properties of AlGaN/GaN HEMT[J]. Journal of Alloys and Compounds, 2020, 815:152283. [21] KIM J, PYEON J, JEON M, et al. Growth and characterization of high quality AlN using combined structure of low temperature buffer and superlattices for applications in the deep ultraviolet[J]. Japanese Journal of Applied Physics, 2015, 54(8): 081001. [22] DENG G Q, ZHANG Y T, YU Y, et al. Significantly improved surface morphology of N-polar GaN film grown on SiC substrate by the optimization of Ⅴ/Ⅲ ratio[J]. Applied Physics Letters, 2018, 112(15): 151607. [23] WALTEREIT P, BRANDT O, TRAMPERT A, et al. Influence of AlN nucleation layers on growth mode and strain relief of GaN grown on 6H-SiC(0001)[J]. Applied Physics Letters, 1999, 74(24): 3660-3662. [24] TANAKA S, IWAI S, AOYAGI Y. Reduction of the defect density in GaN films using ultra-thin AlN buffer layers on 6H-SiC[J]. Journal of Crystal Growth, 1997, 170(1/2/3/4): 329-334. [25] DING G J, GUO L W, XING Z G, et al. Characteristics of GaN grown on 6H-SiC with different AlN buffers[J]. Journal of Semiconductors, 2010, 31(3): 033003. [26] WARREN WEEKS T, BREMSER M D, AILEY K S, et al. GaN thin films deposited via organometallic vapor phase epitaxy on α(6H)-SiC(0001) using high-temperature monocrystalline AlN buffer layers[J]. Applied Physics Letters, 1995, 67(3): 401-403. [27] CHO E, MOGILATENKO A, BRUNNER F, et al. Impact of AlN nucleation layer on strain in GaN grown on 4H-SiC substrates[J]. Journal of Crystal Growth, 2013, 371: 45-49. [28] LI C H, LI Z H, PENG D Q, et al. Growth of thin AlN nucleation layer and its impact on GaN-on-SiC heteroepitaxy[J]. Journal of Alloys and Compounds, 2020, 838: 155557. [29] EINFELDT S, REITMEIER Z J, DAVIS R F. Surface morphology and strain of GaN layers grown using 6H-SiC(0 0 0 1) substrates with different buffer layers[J]. Journal of Crystal Growth, 2003, 253(1/2/3/4): 129-141. [30] MORAN B, WU F, ROMANOV A E, et al. Structural and morphological evolution of GaN grown by metalorganic chemical vapor deposition on SiC substrates using an AlN initial layer[J]. Journal of Crystal Growth, 2004, 273(1/2): 38-47. [31] CHO Y S, SUN Q, LEE I H, et al. Reduction of stacking fault density in m-plane GaN grown on SiC[J]. Applied Physics Letters, 2008, 93(11): 111904. [32] CREE. Nitride epitaxy [EB/OL]. (2021-07-15) https://www.wolfspeed.com/products/materials/nitride-epitaxy/. [33] SARUA A, JI H F, HILTON K P, et al. Thermal boundary resistance between GaN and substrate in AlGaN/GaN electronic devices[J]. IEEE Transactions on Electron Devices, 2007, 54(12): 3152-3158. [34] SMART J A, SCHREMER A T, WEIMANN N G, et al. AlGaN/GaN heterostructures on insulating AlGaN nucleation layers[J]. Applied Physics Letters, 1999, 75(3): 388-390. [35] LAHRÈCHE H, LEROUX M, LAÜGT M, et al. Buffer free direct growth of GaN on 6H-SiC by metalorganic vapor phase epitaxy[J]. Journal of Applied Physics, 1999, 87(1): 577-583. [36] SUN Z, OHTA A, MIYAZAKI S, et al. The interface analysis of GaN grown on 0° off 6H-SiC with an ultra-thin buffer layer[J]. Japanese Journal of Applied Physics, 2016, 55(1): 010303. [37] FENG Y X, SUN H R, YANG X L, et al. High quality GaN-on-SiC with low thermal boundary resistance by employing an ultrathin AlGaN buffer layer[J]. Applied Physics Letters, 2021, 118(5): 052104. [38] YUN F, RESHCHIKOV M A, HE L, et al. Growth of GaN films on porous SiC substrate by molecular-beam epitaxy[J]. Applied Physics Letters, 2002, 81(22): 4142-4144. [39] NEUDECK P G, POWELL J A, BEHEIM G M, et al. Enlargement of step-free SiC surfaces by homoepitaxial web growth of thin SiC cantilevers[J]. Journal of Applied Physics, 2002, 92(5): 2391-2400. [40] BASSIM N D, TWIGG M E, EDDY C R, et al. Microstructure of heteroepitaxial GaN grown on mesa-patterned 4H-SiC substrates[J]. Applied Physics Letters, 2004, 84(25): 5216-5218. [41] SONG S W, LIU Y, LIANG H W, et al. Improvement of quality and strain relaxation of GaN epilayer grown on SiC substrate by in situ SiNx interlayer[J]. Journal of Materials Science: Materials in Electronics, 2013, 24(8): 2923-2927. [42] DENG G Q, ZHANG Y T, YU Y, et al. Significantly reduced in-plane tensile stress of GaN films grown on SiC substrates by using graded AlGaN buffer and SiNx interlayer[J]. Superlattices and Microstructures, 2018, 122: 74-79. [43] HUANG X R, BAI J, DUDLEY M, et al. Step-controlled strain relaxation in the vicinal surface epitaxy of nitrides[J]. Physical Review Letters, 2005, 95(8): 086101. [44] SU C W, WANG T W, WU M C, et al. Fabrication and characterization of GaN HEMTs grown on SiC substrates with different orientations[J]. Solid-State Electronics, 2021, 179: 107980. [45] RUDZIŃSKI M, JEZIERSKA E, WEYHER J L, et al. Defect formation in GaN grown on vicinal 4H-SiC (0001) substrates[J]. Physica Status Solidi (a), 2007, 204(12): 4230-4240. [46] PERNOT J, BUSTARRET E, RUDZIŃSKI M, et al. Strain relaxation in GaN grown on vicinal 4H-SiC(0001) substrates[J]. Journal of Applied Physics, 2007, 101(3): 033536. [47] POWELL A R, ROWLAND L B. SiC materials-progress, status, and potential roadblocks[J]. Proceedings of the IEEE, 2002, 90(6): 942-955. [48] LA VIA F, CAMARDA M, LA MAGNA A. Mechanisms of growth and defect properties of epitaxial SiC[J]. Applied Physics Reviews, 2014, 1(3): 031301. [49] KIMOTO T, WATANABE H. Defect engineering in SiC technology for high-voltage power devices[J]. Applied Physics Express, 2020, 13(12): 120101. [50] KIMOTO T, COOPER J A. Fundamentals of silicon carbide technology[M]. Singapore: John Wiley & Sons Singapore Pte. Ltd, 2014. [51] KORDINA O, HALLIN C, HENRY A, et al. Growth of SiC by “hot-wall” CVD and HTCVD[J]. Physica Status Solidi (b), 1997, 202(1): 321-334. [52] ELLISON A, MAGNUSSON B, HEMMINGSSON C, et al. HTCVD growth of semi-insulating 4H-SiC crystals with low defect density[J]. MRS Online Proceedings Library, 2011, 640(1): 1-11. [53] ELLISON A, ZHANG J, PETERSON J, et al. High temperature CVD growth of SiC[J]. Materials Science and Engineering: B, 1999, 61/62: 113-120. [54] MYERS R L, SHISHKIN Y, KORDINA O, et al. High growth rates (>30 μm/h) of 4H-SiC epitaxial layers using a horizontal hot-wall CVD reactor[J]. Journal of Crystal Growth, 2005, 285(4): 486-490. [55] CRIPPA D, VALENTE G L, RUGGIERO A, et al. New achievements on CVD based methods for SiC epitaxial growth[J]. Materials Science Forum, 2005, 483/484/485: 67-72. [56] VIA F L, GALVAGNO G, ROCCAFORTE F, et al. High growth rate process in a SiC horizontal CVD reactor using HCl[J]. Microelectronic Engineering, 2006, 83(1): 48-50. [57] LA VIA F, GALVAGNO G, FIRRINCIELI A, et al. Epitaxial layers grown with HCl addition: a comparison with the standard process[J]. Materials Science Forum, 2006, 527/528/529: 163-166. [58] LA VIA F, GALVAGNO G, FOTI G, et al. 4H-SiC epitaxial growth with chlorine addition[J]. Chemical Vapor Deposition, 2006, 12(8/9): 509-515. [59] DHANARAJ G, DUDLEY M, CHEN Y, et al. Epitaxial growth and characterization of silicon carbide films[J]. Journal of Crystal Growth, 2006, 287(2): 344-348. [60] TU R, ZHENG D H, CHENG H, et al. Effect of CH4/SiCl4 ratio on the composition and microstructure of 〈110〉-oriented β-SiC bulks by halide CVD[J]. Journal of the European Ceramic Society, 2017, 37(4): 1217-1223. [61] LEONE S, MAUCERI M, PISTONE G, et al. SiC-4H epitaxial layer growth using trichlorosilane (TCS) as silicon precursor[J]. Materials Science Forum, 2006, 527/528/529: 179-182. [62] CAVALLOTTI C, ROSSI F, RAVASIO S, et al. A kinetic analysis of the growth and doping kinetics of the SiC chemical vapor deposition process[J]. Industrial & Engineering Chemistry Research, 2014, 53(22): 9076-9087. [63] GUAN K, GAO Y, ZENG Q F, et al. Numerical modeling of SiC by low-pressure chemical vapor deposition from methyltrichlorosilane[J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1733-1743. [64] KOSHKA Y, LIN H D, MELNYCHUCK G, et al. Homoepitaxial growth of 4H-SiC using CH3Cl carbon precursor[J]. Materials Science Forum, 2005, 483/484/485: 81-84. [65] KOSHKA Y, LIN H D, MELNYCHUK G, et al. Epitaxial growth of 4H-SiC at low temperatures using CH3Cl carbon gas precursor: growth rate, surface morphology, and influence of gas phase nucleation[J]. Journal of Crystal Growth, 2006, 294(2): 260-267. [66] ZHANG W G, HÜTTINGER K J. CVD of SiC from methyltrichlorosilane. part I: deposition rates[J]. Chemical Vapor Deposition, 2001, 7(4): 167-172. [67] LU C Y, CHENG L F, ZHAO C N, et al. Kinetics of chemical vapor deposition of SiC from methyltrichlorosilane and hydrogen[J]. Applied Surface Science, 2009, 255(17): 7495-7499. [68] MIHOPOULOS T G, G HUMMEL S, JENSEN K F. Simulation of flow and growth phenomena in a close-spaced reactor[J]. Journal of Crystal Growth, 1998, 195(1/2/3/4): 725-732. [69] MITROVIC B, GURARY A, KADINSKI L. On the flow stability in vertical rotating disc MOCVD reactors under a wide range of process parameters[J]. Journal of Crystal Growth, 2006, 287(2): 656-663. [70] ITO M, FUJIBAYASHI H, ITO H, et al. Simulation study of high-speed wafer rotation effects in a vertical reactor for 4H-SiC epitaxial growth on 150 mm substrates[J]. Materials Science Forum, 2014, 778/779/780: 171-174. [71] FUJIBAYASHI H, ITO M, ITO H, et al. Development of a 150 mm 4H-SiC epitaxial reactor with high-speed wafer rotation[J]. Applied Physics Express, 2014, 7(1): 015502. [72] LARKIN D J, NEUDECK P G, POWELL J A, et al. Site-competition epitaxy for superior silicon carbide electronics[J]. Applied Physics Letters, 1994, 65(13): 1659-1661. [73] LARKIN D J. SiC dopant incorporation control using site-competition CVD[J]. Physica Status Solidi (b), 1997, 202(1): 305-320. [74] ZHANG J, ELLISON A, HENRY A, et al. Nitrogen impurity incorporation behavior in a chimney HTCVD process: pressure and temperature dependence[J]. Materials Science and Engineering: B, 1999, 61/62: 151-154. [75] PEDERSEN H, BEYER F C, HASSAN J, et al. Donor incorporation in SiC epilayers grown at high growth rate with chloride-based CVD[J]. Journal of Crystal Growth, 2009, 311(5): 1321-1327. [76] HUANG Y C, WANG R, QIAN Y X, et al. Improving the doping efficiency of Al in 4H-SiC by co-doping group-ⅣB elements[EB/OL]. 2021. [77] KIMOTO T, ITOH A, MATSUNAMI H. Step-controlled epitaxial growth of high-quality SiC layers[J]. Physica Status Solidi (b), 1997, 202(1): 247-262. [78] FERRO G, CHAUSSENDE D, TSAVDARIS N. Understanding Al incorporation into 4H-SiC during epitaxy[J]. Journal of Crystal Growth, 2019, 507: 338-343. [79] CREE. SiC Epitaxy (EB/OL). (2021-07-15) https://www.wolfspeed.com/materials/products/sic-epitaxy. [80] TSUCHIDA H, KAMATA I, MIYAZAWA T, et al. Recent advances in 4H-SiC epitaxy for high-voltage power devices[J]. Materials Science in Semiconductor Processing, 2018, 78: 2-12. [81] GAN F, JUN S D, KIMOTO T. Triple Shockley type stacking faults in 4H-SiC epilayers[J]. Applied Physics Letters, 2009, 94(9): 091910. [82] KAMATA I, ZHANG X, TSUCHIDA H. Photoluminescence of Frank-type defects on the basal plane in 4H-SiC epilayers[J]. Applied Physics Letters, 2010, 97(17): 172107. [83] HONG M H, SAMANT A V, PIROUZ P. Stacking fault energy of 6H-SiC and 4H-SiC single crystals[J]. Philosophical Magazine A, 2000, 80(4): 919-935. [84] IZUMI S, TSUCHIDA H, KAMATA I, et al. Structural analysis and reduction of in-grown stacking faults in 4H-SiC epilayers[J]. Applied Physics Letters, 2005, 86(20): 202108. [85] FUJIWARA H, KIMOTO T, TOJO T, et al. Characterization of in-grown stacking faults in 4H-SiC (0001) epitaxial layers and its impacts on high-voltage Schottky barrier diodes[J]. Applied Physics Letters, 2005, 87(5): 051912. [86] IRMSCHER K, DOERSCHEL J, ROST H J, et al. Stacking faults in heavily nitrogen doped 4H-SiC[J]. The European Physical Journal Applied Physics, 2004, 27(1/2/3): 243-246. [87] OKOJIE R S, XHANG M, PIROUZ P, et al. 4H- to 3C-SiC polytypic transformation during oxidation[J]. Materials Science Forum, 2002, 389/390/391/392/393: 451-454. [88] BERGMAN P, LENDENMANN H, NILSSON P A, et al. Crystal defects as source of anomalous forward voltage increase of 4H-SiC diodes[J]. Materials Science Forum, 2001, 353/354/355/356: 299-302. [89] SKOWRONSKI M, HA S. Degradation of hexagonal silicon-carbide-based bipolar devices[J]. Journal of Applied Physics, 2006, 99(1): 011101. [90] NAKAYAMA K, TANAKA A, ASANO K, et al. Electrical characteristics of 4H-SiC pin diode with carbon implantation or thermal oxidation[J]. Materials Science Forum, 2012, 717/718/719/720: 989-992. [91] UEHIGASHI H, FUKADA K, ITO M, et al. Analysis and reduction of stacking faults in fast epitaxial growth[J]. Materials Science Forum, 2016, 858: 173-176. [92] OHTANI N, KATSUNO M, TSUGE H, et al. Dislocation processes during SiC bulk crystal growth[J]. Microelectronic Engineering, 2006, 83(1): 142-145. [93] YAZDANFAR M, PEDERSEN H, KORDINA O, et al. Effect of process parameters on dislocation density in thick 4H-SiC epitaxial layers grown by chloride-based CVD on 4° off-axis substrates[J]. Materials Science Forum, 2014, 778/779/780: 159-162. [94] WANG S, DUDLEY M, CARTER C H, et al. X-ray topographic studies of defects in PVT 6H-SiC substrates and epitaxial 6H-SiC thin films[J]. MRS Online Proceedings Library, 1994, 339(1): 735-740. [95] WAHAB Q, ELLISON A, HENRY A, et al. Influence of epitaxial growth and substrate-induced defects on the breakdown of 4H-SiC Schottky diodes[J]. Applied Physics Letters, 2000, 76(19): 2725-2727. [96] NEUDECK P G, FAZI C. Study of bulk and elementary screw dislocation assisted reverse breakdown in low-voltage (<250 V) 4H-SiC p+n junction diodes. Ⅱ. Dynamic breakdown properties[J]. IEEE Transactions on Electron Devices, 1999, 46(3): 485-492. [97] HA S, MIESZKOWSKI P, SKOWRONSKI M, et al. Dislocation conversion in 4H silicon carbide epitaxy[J]. Journal of Crystal Growth, 2002, 244(3/4): 257-266. [98] WHEELER V D, VANMIL B L, MYERS-WARD R L, et al. Effects of nitrogen doping on basal plane dislocation reduction in 8° off-cut 4H-SiC epilayers[J]. Materials Science Forum, 2011, 679/680: 63-66. [99] ZHANG Z, SUDARSHAN T S. Evolution of basal plane dislocations during 4H-silicon carbide homoepitaxy[J]. Applied Physics Letters, 2005, 87(16): 161917. [100] ZHANG Z, SUDARSHAN T S. Basal plane dislocation-free epitaxy of silicon carbide[J]. Applied Physics Letters, 2005, 87(15): 151913. [101] STAHLBUSH R E, MAHAKIK K N A, LELIS A J, et al. Effects of basal plane dislocations on SiC power device reliability[C]//2018 IEEE International Electron Devices Meeting (IEDM). December 1-5, 2018, San Francisco, CA, USA. IEEE, 2018: 19.4.1-19.4.4. [102] OHNO T, YAMAGUCHI H, KURODA S, et al. Influence of growth conditions on basal plane dislocation in 4H-SiC epitaxial layer[J]. Journal of Crystal Growth, 2004, 271(1/2): 1-7. [103] MYERS-WARD R L, VANMIL B L, STAHLBUSH R E, et al. Turning of basal plane dislocations during epitaxial growth on 4° off-axis 4H-SiC[J]. Materials Science Forum, 2009, 615/616/617: 105-108. [104] SONG H Z, SUDARSHAN T S. Basal plane dislocation conversion near the epilayer/substrate interface in epitaxial growth of 4° off-axis 4H-SiC[J]. Journal of Crystal Growth, 2013, 371: 94-101. [105] SUN Y Q, FENG G, ZHANG J H, et al. Reduction of epitaxial defects on 4°-off 4HSiC homo-epitaxial growth by optimizing in situ etching process[J]. Superlattices and Microstructures, 2016, 99: 145-150. [106] SONG H Z, RANA T, SUDARSHAN T S. Investigations of defect evolution and basal plane dislocation elimination in CVD epitaxial growth of silicon carbide on eutectic etched epilayers[J]. Journal of Crystal Growth, 2011, 320(1): 95-102. [107] VANMIL B L, STAHLBUSH R E, MYERS-WARD R L, et al. Basal plane dislocation reduction for 8° off-cut, 4H-SiC using in situ variable temperature growth interruptions[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2008, 26(4): 1504. [108] BALACHANDRAN A, SUDARSHAN T S, CHANDRASHEKHAR M V S. Basal plane dislocation free recombination layers on low-doped buffer layer for power devices[J]. Crystal Growth & Design, 2017, 17(4): 1550-1557. [109] MA P, NI J J, SUN J W, et al. Three-dimensional detection and quantification of defects in SiC by optical coherence tomography[J]. Applied Optics, 2020, 59(6): 1746-1755. [110] OKADA T, KIMOTO T, NODA H, et al. Correspondence between surface morphological faults and crystallographic defects in 4H-SiC homoepitaxial film[J]. Japanese Journal of Applied Physics, 2002, 41(Part 1, No. 11A): 6320-6326. [111] KIMOTO T, MIYAMOTO N, MATSUNAMI H. Performance limiting surface defects in SiC epitaxial p-n junction diodes[J]. IEEE Transactions on Electron Devices, 1999, 46(3): 471-477. [112] KONISHI K, NAKATA S, NAKAKI Y, et al. Effect of stacking faults in triangular defects on 4H-SiC junction barrier Schottky diodes[J]. Japanese Journal of Applied Physics, 2013, 52(4S): 04CP05. [113] NEUDECK P G. Electrical impact of SiC structural crystal defects on high electric field devices[J]. Materials Science Forum, 2000, 338/339/340/341/342: 1161-1166. [114] LI Y, ZHAO Z F, YU L, et al. Reduction of morphological defects in 4H-SiC epitaxial layers[J]. Journal of Crystal Growth, 2019, 506: 108-113. [115] LEONE S, PEDERSEN H, HENRY A, et al. Improved morphology for epitaxial growth on 4° off-axis 4H-SiC substrates[J]. Journal of Crystal Growth, 2009, 311(12): 3265-3272. [116] YAN G G, HE Y W, SHEN Z W, et al. Effect of C/Si ratio on growth of 4H-SiC epitaxial layers on on-axis and 4° off-axis substrates[J]. Journal of Crystal Growth, 2020, 531: 125362. [117] DALIBOR T, PENSL G, MATSUNAMI H, et al. Deep defect centers in silicon carbide monitored with deep level transient spectroscopy[J]. Physica Status Solidi (a), 1997, 162(1): 199-225. [118] DANNO K, KIMOTO T. Deep level transient spectroscopy on as-grown and electron-irradiated p-type 4H-SiC epilayers[J]. Journal of Applied Physics, 2007, 101(10): 103704. [119] SASAKI S, KAWAHARA K, FENG G, et al. Major deep levels with the same microstructures observed in n-type 4H-SiC and 6H-SiC[J]. Journal of Applied Physics, 2011, 109(1): 013705. [120] KLEIN P B, SHANABROOK B V, HUH S W, et al. Lifetime-limiting defects in n-4H-SiC epilayers[J]. Applied Physics Letters, 2006, 88(5): 052110. [121] DANNO K, NAKAMURA D, KIMOTO T. Investigation of carrier lifetime in 4H-SiC epilayers and lifetime control by electron irradiation[J]. Applied Physics Letters, 2007, 90(20): 202109. [122] KAWAHARA K, JUN S D, KIMOTO T. Analytical model for reduction of deep levels in SiC by thermal oxidation[J]. Journal of Applied Physics, 2012, 111(5): 053710. [123] KAWAHARA K, THANG TRINH X, SON N T, et al. Investigation on origin of Z1/2 center in SiC by deep level transient spectroscopy and electron paramagnetic resonance[J]. Applied Physics Letters, 2013, 102(11): 112106. [124] HIYOSHI T, KIMOTO T. Reduction of deep levels and improvement of carrier lifetime in n-type 4H-SiC by thermal oxidation[J]. Applied Physics Express, 2009, 2: 041101. [125] HIYOSHI T, KIMOTO T. Elimination of the major deep levels in n- and p-type 4H-SiC by two-step thermal treatment[J]. Applied Physics Express, 2009, 2(9): 091101. [126] STORASTA L, TSUCHIDA H. Reduction of traps and improvement of carrier lifetime in 4H-SiC epilayers by ion implantation[J]. Applied Physics Letters, 2007, 90(6): 062116. [127] LILJA L, BOOKER I D, HASSAN J U, et al. The influence of growth conditions on carrier lifetime in 4H-SiC epilayers[J]. Journal of Crystal Growth, 2013, 381: 43-50. [128] LITTON C W, JOHNSTONE D, AKARCA-BIYIKLI S, et al. Effect of C/Si ratio on deep levels in epitaxial 4H-SiC[J]. Applied Physics Letters, 2006, 88(12): 121914. [129] DANNO K, HORI T, KIMOTO T. Impacts of growth parameters on deep levels in n-type 4H-SiC[J]. Journal of Applied Physics, 2007, 101(5): 053709. [130] HAYASHI T, ASANO K, SUDA J, et al. Enhancement and control of carrier lifetimes in p-type 4H-SiC epilayers[J]. Journal of Applied Physics, 2012, 112(6): 064503. [131] OKUDA T, MIYAZAWA T, TSUCHIDA H, et al. Enhancement of carrier lifetime in lightly Al-doped p-type 4H-SiC epitaxial layers by combination of thermal oxidation and hydrogen annealing[J]. Applied Physics Express, 2014, 7(8): 085501. [132] RUSSELL S A O, PÉREZ-TOMÁS A, MCCONVILLE C F, et al. Heteroepitaxial beta-Ga2O3 on 4H-SiC for an FET with reduced self heating[J]. IEEE Journal of the Electron Devices Society, 2017, 5(4): 256-261. [133] NEPAL N, KATZER D S, DOWNEY B P, et al. Heteroepitaxial growth of β-Ga2O3 films on SiC via molecular beam epitaxy[J]. Journal of Vacuum Science & Technology A, 2020, 38(6): 063406. [134] XIA X C, CHEN Y P, FENG Q J, et al. Hexagonal phase-pure wide band gap ε-Ga2O3 films grown on 6H-SiC substrates by metal organic chemical vapor deposition[J]. Applied Physics Letters, 2016, 108(20): 202103. [135] NIKOLAEV V I, STEPANOV S I, PECHNIKOV A I, et al. HVPE growth and characterization of ε-Ga2O3 films on various substrates[J]. ECS Journal of Solid State Science and Technology, 2020, 9(4): 045014. |
[1] | 姬凯迪, 高灿灿, 杨发顺, 熊倩, 马奎. 后退火气氛对磁控溅射制备β-Ga2O3薄膜材料的影响[J]. 人工晶体学报, 2021, 50(6): 1056-1061. |
[2] | 陶思祺, 张继军, 王淑蕾, 秦美琪, 邱攀辉, 宋晓龙. Ti/Au复合电极在CdZnTe (111)B面上的表面结构与性能研究[J]. 人工晶体学报, 2021, 50(6): 1089-1095. |
[3] | 张利繁, 贾伟, 董海亮, 李天保, 贾志刚, 许并社. InGaN/GaN微米阵列结构的生长及发光性能研究[J]. 人工晶体学报, 2021, 50(4): 776-782. |
[4] | 陈王义博, 徐俞, 曹冰, 徐科. 宽周期掩膜法HVPE侧向外延自支撑GaN的研究[J]. 人工晶体学报, 2021, 50(3): 416-420. |
[5] | 邵凯恒, 夏嵩渊, 张育民, 王建峰, 徐科. GaN单晶衬底上同质外延界面杂质的研究[J]. 人工晶体学报, 2021, 50(3): 441-446. |
[6] | 刘国峰, 左然. GaN-MOVPE气相自由基反应的量子化学研究[J]. 人工晶体学报, 2021, 50(3): 469-476. |
[7] | 王婷, 赵红莉, 郭世伟, 姚娟, 李爽, 符跃春, 沈晓明, 何欢. n-In0.35Ga0.65N/p-Si异质结的制备及其电学性能研究[J]. 人工晶体学报, 2021, 50(3): 484-490. |
[8] | 高灿灿, 姬凯迪, 马奎, 杨发顺. 磁控溅射衬底加热温度和后退火温度对制备β-Ga2O3薄膜材料的影响[J]. 人工晶体学报, 2021, 50(2): 296-301. |
[9] | 付丹扬;龚建超;雷丹;黄嘉丽;王琦琨;吴亮. PVT法AlN单晶生长技术研究进展及其面临挑战[J]. 人工晶体学报, 2020, 49(7): 1141-1156. |
[10] | 周浩;徐俞;曹冰;徐科;王钦华. 石墨烯上外延GaN薄膜的取向演变研究[J]. 人工晶体学报, 2020, 49(5): 794-798. |
[11] | 沈波;杨学林;许福军. 氮化物宽禁带半导体的MOCVD大失配异质外延[J]. 人工晶体学报, 2020, 49(11): 1953-1969. |
[12] | 姜元希;刘南柳;张法碧;王琦;张国义. 氮化镓单晶衬底制备技术发展与展望[J]. 人工晶体学报, 2020, 49(11): 2038-2045. |
[13] | 贲建伟;孙晓娟;蒋科;陈洋;石芝铭;臧行;张山丽;黎大兵;吕威. AlGaN基宽禁带半导体光电材料与器件[J]. 人工晶体学报, 2020, 49(11): 2046-2067. |
[14] | 李金钗;高娜;林伟;蔡端俊;黄凯;李书平;康俊勇. AlGaN量子结构及其紫外光源应用[J]. 人工晶体学报, 2020, 49(11): 2068-2078. |
[15] | 吴峰;戴江南;陈长清. AlGaN基深紫外发光二极管研究进展[J]. 人工晶体学报, 2020, 49(11): 2079-2097. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||