人工晶体学报 ›› 2021, Vol. 50 ›› Issue (9): 1796-1809.
张道永, 王书荣
收稿日期:
2021-05-06
出版日期:
2021-09-15
发布日期:
2021-10-15
通讯作者:
王书荣,博士,教授。E-mail:shrw88@aliyun.com
作者简介:
张道永(1998—),男,安徽省人。E-mail:daoyongzh@163.com
基金资助:
ZHANG Daoyong, WANG Shurong
Received:
2021-05-06
Online:
2021-09-15
Published:
2021-10-15
摘要: 低成本薄膜太阳电池在光伏领域有着很大的发展空间和应用前景,铜锌锡硫硒(Cu2ZnSn(S,Se)4,CZTSSe)薄膜太阳电池具有组成元素丰富、无毒、光吸收系数高、光学带隙合适、理论光电转换效率高和稳定性好等优点,是一种具有大规模应用潜力的新型薄膜太阳电池。本文将对铜锌锡硫硒薄膜太阳电池的发展、制备方法和研究现状进行介绍,并对报道过的铜锌锡硫硒薄膜太阳电池进行对比分析,概括目前铜锌锡硫硒薄膜太阳电池的成果及现状,最后阐明目前铜锌锡硫硒薄膜太阳电池所存在的问题并对其未来进行展望。
中图分类号:
张道永, 王书荣. 铜锌锡硫硒薄膜太阳电池研究进展[J]. 人工晶体学报, 2021, 50(9): 1796-1809.
ZHANG Daoyong, WANG Shurong. Research Progress of Cu2ZnSn(S,Se)4 Thin Film Solar Cells[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(9): 1796-1809.
[1] 敖建平.CIGS薄膜太阳电池产业化的最新进展及发展趋势[J].人工晶体学报,2012,41(S1):189-195. AO J P. Recent progress and trends in industrialization of CIGS film solar cells[J]. Journal of Synthetic Crystals, 2012, 41(S1): 189-195(in Chinese). [2] LEE T D, EBONG A U. A review of thin film solar cell technologies and challenges[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 1286-1297. [3] SONG J H, YOON J, AN Y S, et al. Power performance characteristics of transparent thin-film BIPV module depending on an installation angle[J]. Journal of the Korean Solar Energy Society, 2008: 28. [4] GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7): 506-514. [5] SPALATU N, KRUNKS M, HIIE J. Structural and optoelectronic properties of CdCl2 activated CdTe thin films modified by multiple thermal annealing[J]. Thin Solid Films, 2017, 633: 106-111. [6] NAKAMURA M, YAMAGUCHI K, KIMOTO Y, et al. Cd-free Cu(In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%[J]. IEEE Journal of Photovoltaics, 2019, 9(6): 1863-1867. [7] YOO J J, SEO G, CHUA M R, et al. Efficient perovskite solar cells via improved carrier management[J]. Nature, 2021, 590(7847): 587-593. [8] NITSCHE R, SARGENT D F, WILD P. Crystal growth of quaternary 122464 chalcogenides by iodine vapor transport[J]. Journal of Crystal Growth, 1967, 1(1): 52-53. [9] SON D H, KIM S H, KIM S Y, et al. Effect of solid-H2S gas reactions on CZTSSe thin film growth and photovoltaic properties of a 12.62% efficiency device[J]. Journal of Materials Chemistry A, 2019, 7(44): 25279-25289. [10] WALSH A, CHEN S Y, WEI S H, et al. Kesterite thin-film solar cells: advances in materials modelling of Cu2ZnSnS4[J]. Advanced Energy Materials, 2012, 2(4): 400-409. [11] SHIN D, SAPAROV B, MITZI D B. Photovoltaic materials: defect engineering in multinary earth-abundant chalcogenide photovoltaic materials[J]. Advanced Energy Materials, 2017, 7(11): 1602366. [12] CHEN S Y, WALSH A, YANG J H, et al. Compositional dependence of structural and electronic properties of Cu2ZnSn(S, Se)4 alloys for thin film solar cells[J]. Physical Review B, 2011, 83(12): 125201. [13] ITO K, NAKAZAWA T. Electrical and optical properties of stannite-type quaternary semiconductor thin films[J]. Japanese Journal of Applied Physics, 1988, 27(Part 1, No. 11): 2094-2097. [14] POLIZZOTTI A, REPINS I L, NOUFI R, et al. The state and future prospects of kesterite photovoltaics[J]. Energy & Environmental Science, 2013, 6(11): 3171. [15] SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 1961, 32(3): 510-519. [16] PRABHAKAR T, JAMPANA N. Effect of sodium diffusion on the structural and electrical properties of Cu2ZnSnS4 thin films[J]. Solar Energy Materials and Solar Cells, 2011, 95(3): 1001-1004. [17] NISHIWAKI S, KOHARA N, NEGAMI T, et al. Characterization of Cu(In, Ga)Se2/Mo interface In CIGS solar cells[J]. MRS Online Proceedings Library, 1997, 485(1): 139-144. [18] ORGASSA K, SCHOCK H W, WERNER J H. Alternative back contact materials for thin film Cu(In, Ga)Se2 solar cells[J]. Thin Solid Films, 2003, 431/432: 387-391. [19] 宋燕平.铜锌锡硫硒太阳能电池的界面钝化改性及其光电性能研究[D].长春:吉林大学,2020. SONG Y P. Investigation on the interface passivation modification for the efficient Cu2Zn Sn(S, Se)4 solar cells[D]. Changchun: Jilin University, 2020(in Chinese). [20] KATAGIRI H, JIMBO K, MAW W S, et al. Development of CZTS-based thin film solar cells[J]. Thin Solid Films, 2009, 517(7): 2455-2460. [21] KATAGIRI H, JIMBO K, MORIYA K, et al. Solar cell without environmental pollution by using CZTS thin film[C]//3rd World Conference on Photovoltaic Energy Conversion, 2003. Proceedings of. May 11-18, 2003, Osaka, Japan. IEEE, 2003: 2874-2879. [22] REPINS I, BEALL C, VORA N, et al. Co-evaporated Cu2ZnSnSe4 films and devices[J]. Solar Energy Materials and Solar Cells, 2012, 101: 154-159. [23] LEE Y S, GERSHON T, GUNAWAN O, et al. Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length[J]. Advanced Energy Materials, 2015, 5(7): 1401372. [24] HWANG D K, KO B S, JEON D H, et al. Single-step sulfo-selenization method for achieving low open circuit voltage deficit with band gap front-graded Cu2ZnSn(S, Se)4 thin films[J]. Solar Energy Materials and Solar Cells, 2017, 161: 162-169. [25] CHALAPATHY R B V, JUNG G S, AHN B T. Fabrication of Cu2ZnSnS4 films by sulfurization of Cu/ZnSn/Cu precursor layers in sulfur atmosphere for solar cells[J]. Solar Energy Materials and Solar Cells, 2011, 95(12): 3216-3221. [26] LECHNER R, JOST S, PALM J, et al. Cu2ZnSn(S, Se)4 solar cells processed by rapid thermal processing of stacked elemental layer precursors[J]. Thin Solid Films, 2013, 535: 5-9. [27] MÁRQUEZ J, NEUSCHITZER M, DIMITRIEVSKA M, et al. Systematic compositional changes and their influence on lattice and optoelectronic properties of Cu2ZnSnSe4 kesterite solar cells[J]. Solar Energy Materials and Solar Cells, 2016, 144: 579-585. [28] CHAWLA V, CLEMENS B. Effect of composition on high efficiency CZTSSe devices fabricated using co-sputtering of compound targets[C]//2012 38th IEEE Photovoltaic Specialists Conference. June 3-8, 2012, Austin, TX, USA. IEEE, 2012: 2990-2992. [29] LI J J, WANG H X, LUO M, et al. 10% Efficiency Cu2ZnSn(S, Se)4 thin film solar cells fabricated by magnetron sputtering with enlarged depletion region width[J]. Solar Energy Materials and Solar Cells, 2016, 149: 242-249. [30] YAN C, HUANG J L, SUN K W, et al. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment[J]. Nature Energy, 2018, 3(9): 764-772. [31] LI J, HUANG Y, HUANG J, et al. Defect control for 12.5% efficiency Cu2ZnSnSe4 kesterite thin-film solar cells by engineering of local chemical environment[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(52): e2005268. [32] HIROI H, SAKAI N, IWATA Y, et al. Impact of buffer layer on kesterite solar cells[C]//2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC). June 14-19, 2015, New Orleans, LA, USA. IEEE, 2015: 1-4. [33] ESPINDOLA-RODRIGUEZ M, SANCHEZ Y, LÓPEZ-MARINO S, et al. Selenization of Cu2ZnSnS4 thin films obtained by pneumatic spray pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2016, 120: 45-51. [34] FRANCKEVIČIUS M, PAKTAS V, GRINCIEN G, et al. Efficiency improvement of superstrate CZTSSe solar cells processed by spray pyrolysis approach[J]. Solar Energy, 2019, 185: 283-289. [35] ENKHBAT T, KIM S, KIM J. Device characteristics of band gap tailored 10.04% efficient CZTSSe solar cells sprayed from water-based solution[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36735-36741. [36] SCRAGG J J, DALE P J, PETER L M, et al. New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material[J]. Physica Status Solidi (b), 2008, 245(9): 1772-1778. [37] SCRAGG J J, BERG D M, DALE P J. A 3.2% efficient Kesterite device from electrodeposited stacked elemental layers[J]. Journal of Electroanalytical Chemistry, 2010, 646(1/2): 52-59. [38] CHEON K B, HWANG S K, SEO S W, et al. Roughness-controlled Cu2ZnSn(S, Se)4 thin-film solar cells with reduced charge recombination[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24088-24095. [39] SEO S W, JEON J O, SEO J W, et al. Compositional and interfacial modification of Cu2ZnSn(S, Se)4 thin-film solar cells prepared by electrochemical deposition[J]. ChemSusChem, 2016, 9(5): 439-444. [40] TODOROV T K, REUTER K B, MITZI D B. High-efficiency solar cell with earth-abundant liquid-processed absorber[J]. Advanced Materials (Deerfield Beach, Fla), 2010, 22(20): E156-E159. [41] WANG W, WINKLER M T, GUNAWAN O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency[J]. Advanced Energy Materials, 2014, 4(7): 1301465. [42] 于 晴.高质量铜锌锡硫硒薄膜的溶液法制备及光伏器件性能研究[D].北京:中国科学院大学(中国科学院物理研究所),2020. YU Q. Preparation of high quality Cu2ZnSn(S, Se)4 film by solution method and study of the photovoltaic device performance[D]. Beijing: University of Chinese Academy of Sciences (Institute of Physics, Chinese Academy of Sciences), 2020(in Chinese). [43] LUAN H M, YAO B, LI Y F, et al. Influencing mechanism of cationic ratios on efficiency of Cu2ZnSn(S, Se)4 solar cells fabricated with DMF-based solution approach[J]. Solar Energy Materials and Solar Cells, 2019, 195: 55-62. [44] HAASS S G, DIETHELM M, WERNER M, et al. 11.2% efficient solution processed kesterite solar cell with a low voltage deficit[J]. Advanced Energy Materials, 2015, 5(18): 1500712. [45] GONG Y C, ZHANG Y F, ZHU Q, et al. Identifying the origin of the Voc deficit of kesterite solar cells from the two grain growth mechanisms induced by Sn2+ and Sn4+ precursors in DMSO solution[J]. Energy & Environmental Science, 2021, 14(4): 2369-2380. [46] WU S H, HUANG K T, CHEN H J, et al. Cu2ZnSn(SxSe1-x)4 thin film solar cell with high sulfur content (x approximately 0.4) and low Voc deficit prepared using a postsulfurization process[J]. Solar Energy Materials and Solar Cells, 2018, 175: 89-95. [47] ZHAO X Y, PAN Y N, ZUO C T, et al. Ambient air-processed Cu2ZnSn(S, Se)4 solar cells with over 12% efficiency[J]. Science Bulletin, 2021, 66(9): 880-883. [48] GUO L B, SHI J J, YU Q, et al. Coordination engineering of Cu-Zn-Sn-S aqueous precursor for efficient kesterite solar cells[J]. Science Bulletin, 2020, 65(9): 738-746. [49] MIN X, GUO L B, YU Q, et al. Enhancing back interfacial contact by in situ prepared MoO3 thin layer for Cu2ZnSnSxSe4-x solar cells[J]. Science China Materials, 2019, 62(6): 797-802. [50] WERNER M, SUTTER-FELLA C M, HAGENDORFER H, et al. Cu2ZnSn(S, Se)4 solar cell absorbers processed from Na-containing solutions in DMSO[J]. Physica Status Solidi (a), 2015, 212(1): 116-120. [51] XIN H, VORPAHL S M, COLLORD A D, et al. Lithium-doping inverts the nanoscale electric field at the grain boundaries in Cu2ZnSn(S, Se)4 and increases photovoltaic efficiency[J]. Physical Chemistry Chemical Physics, 2015, 17(37): 23859-23866. [52] TAI K F, FU D C, CHIAM S Y, et al. Antimony doping in solution-processed Cu2ZnSn(S, Se)4 solar cells[J]. ChemSusChem, 2015, 8(20): 3504-3511. [53] GONG Y C, ZHANG Y F, JEDLICKA E, et al. Sn4+ precursor enables 12.4% efficient kesterite solar cell from DMSO solution with open circuit voltage deficit below 0.30 V[J]. Science China Materials, 2021, 64(1): 52-60. [54] CHEN S Y, GONG X G, WALSH A, et al. Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of Ⅱ-Ⅵ and Ⅰ-Ⅲ-Ⅵ2 compounds[J]. Physical Review B, 2009, 79(16): 165211. [55] COLLORD A D, HILLHOUSE H W. Germanium alloyed kesterite solar cells with low voltage deficits[J]. Chemistry of Materials, 2016, 28(7): 2067-2073. [56] HADKE S, LEVCENKO S, SAI GAUTAM G, et al. Suppressed deep traps and bandgap fluctuations in Cu2CdSnS4 solar cells with ≈8% efficiency[J]. Advanced Energy Materials, 2019, 9(45): 1902509. [57] GOKMEN T, GUNAWAN O, TODOROV T K, et al. Band tailing and efficiency limitation in kesterite solar cells[J]. Applied Physics Letters, 2013, 103(10): 103506. [58] HAGES C J, KOEPER M J, AGRAWAL R. Optoelectronic and material properties of nanocrystal-based CZTSe absorbers with Ag-alloying[J]. Solar Energy Materials and Solar Cells, 2016, 145: 342-348. [59] SUN R J, ZHUANG D M, ZHAO M, et al. Beyond 11% efficient Cu2ZnSn(Se, S)4 thin film solar cells by cadmium alloying[J]. Solar Energy Materials and Solar Cells, 2018, 174: 494-498. [60] SU Z H, TAN J M R, LI X L, et al. Cation substitution of solution-processed Cu2ZnSnS4 thin film solar cell with over 9% efficiency[J]. Advanced Energy Materials, 2015, 5(19): 1500682. [61] HE M R, ZHANG X, HUANG J L, et al. High efficiency Cu2ZnSn(S, Se)4 solar cells with shallow LiZn acceptor defects enabled by solution-based Li post-deposition treatment[J]. Advanced Energy Materials, 2021, 11(13): 2003783. [62] DU Y C, WANG S S, TIAN Q W, et al. Defect engineering in earth-abundant Cu2 ZnSn(S, Se)4 photovoltaic materials via Ga3+-doping for over 12% efficient solar cells[J]. Advanced Functional Materials, 2021, 31(16): 2010325. [63] YANG K J, SIM J H, SON D H, et al. Comparison of chalcopyrite and kesterite thin-film solar cells[J]. Journal of Industrial and Engineering Chemistry, 2017, 45: 78-84. [64] LEE Y S, GERSHON T, TODOROV T K, et al. Atomic layer deposited aluminum oxide for interface passivation of Cu2ZnSn(S, Se)4Thin-film solar cells[J]. Advanced Energy Materials, 2016, 6(12): 1600198. [65] YANG K J, SON D H, SUNG S J, et al. A band-gap-graded CZTSSe solar cell with 12.3% efficiency[J]. Journal of Materials Chemistry A, 2016, 4(26): 10151-10158. [66] QI Y F, KOU D X, ZHOU W H, et al. Engineering of interface band bending and defects elimination via a Ag-graded active layer for efficient (Cu, Ag)2ZnSn(S, Se)4 solar cells[J]. Energy & Environmental Science, 2017, 10(11): 2401-2410. [67] REY G, REDINGER A, SENDLER J, et al. The band gap of Cu2ZnSnSe4: effect of order-disorder[J]. Applied Physics Letters, 2014, 105(11): 112106. [68] XIE H B, LÓPEZ-MARINO S, OLAR T, et al. Impact of Na dynamics at the Cu2ZnSn(S, Se)4/CdS interface during post low temperature treatment of absorbers[J]. ACS Applied Materials & Interfaces, 2016, 8(7): 5017-5024. [69] SARDASHTI K, HAIGHT R, GOKMEN T, et al. Impact of nanoscale elemental distribution in high-performance kesterite solar cells[J]. Advanced Energy Materials, 2015, 5(10): 1402180. [70] KRÄMMER C, HUBER C, ZIMMERMANN C, et al. Reversible order-disorder related band gap changes in Cu2ZnSn(S, Se)4 via post-annealing of solar cells measured by electroreflectance[J]. Applied Physics Letters, 2014, 105(26): 262104. [71] SCRAGG J J S, CHOUBRAC L, LAFOND A, et al. A low-temperature order-disorder transition in Cu2ZnSnS4 thin films[J]. Applied Physics Letters, 2014, 104(4): 041911. [72] SCRAGG J J S, LARSEN J K, KUMAR M, et al. Cu-Zn disorder and band gap fluctuations in Cu2ZnSn(S, Se)4: theoretical and experimental investigations[J]. Physica Status Solidi (b), 2016, 253(2): 247-254. [73] NEUSCHITZER M, SANCHEZ Y, OLAR T, et al. Complex surface chemistry of kesterites: Cu/Zn reordering after low temperature postdeposition annealing and its role in high performance devices[J]. Chemistry of Materials, 2015, 27(15): 5279-5287. [74] TAJIMA S, ASAHI R, ISHEIM D, et al. Atom-probe tomographic study of interfaces of Cu2ZnSnS4 photovoltaic cells[J]. Applied Physics Letters, 2014, 105(9): 093901. [75] TAJIMA S, UMEHARA M, HASEGAWA M, et al. Cu2ZnSnS4 photovoltaic cell with improved efficiency fabricated by high-temperature annealing after CdS buffer-layer deposition[J]. Progress in Photovoltaics: Research and Applications, 2017, 25(1): 14-22. [76] GAO S S, ZHANG Y, AO J P, et al. Insight into the role of post-annealing in air for high efficient Cu2ZnSn(S, Se)4 solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 182: 228-236. [77] TEETER G, HARVEY S P, JOHNSTON S. Controlling metastable native point-defect populations in Cu(In, Ga)Se2 and Cu2ZnSnSe4 materials and solar cells through voltage-bias annealing[J]. Journal of Applied Physics, 2017, 121(4): 043102. [78] DIMITRIEVSKA M, GIRALDO S, PISTOR P, et al. Raman scattering analysis of the surface chemistry of kesterites: impact of post-deposition annealing and Cu/Zn reordering on solar cell performance[J]. Solar Energy Materials and Solar Cells, 2016, 157: 462-467. [79] SU Z, LIANG G, FAN P, et al. Device postannealing enabling over 12% efficient solution-processed Cu2ZnSnS4 solar cells with Cd2+ substitution[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(32): e2000121. |
[1] | 肖靖, 常双聚, 赵莉, 朱亚彬, 陈云琳. 高掺锌/镁铌酸锂薄膜的光电性质[J]. 人工晶体学报, 2021, 50(9): 1648-1654. |
[2] | 高腾, 邢锟, 吴功辉, 陈新, 胡晓琳, 庄乃锋. Bi26-x-yMxNyO40(M, N=Fe, Co, Gd)软铋矿薄膜的制备和强磁光效应[J]. 人工晶体学报, 2021, 50(9): 1655-1661. |
[3] | 胡继超, 孟佳琦, 李丹, 贺小敏, 王曦, 许蓓, 蒲红斌. 低温热处理温度对SiC衬底上CuAlO2薄膜特性的影响[J]. 人工晶体学报, 2021, 50(9): 1662-1667. |
[4] | 罗健, 张小伟, 代波. 反应磁控溅射氧化镍薄膜的自旋塞贝克效应[J]. 人工晶体学报, 2021, 50(9): 1668-1674. |
[5] | 廖杨芳, 谢泉. 溅射功率和溅射时间对Mg2Si纳米晶薄膜结构和电阻率的影响[J]. 人工晶体学报, 2021, 50(9): 1675-1680. |
[6] | 陈星辉, 唐颖慧, 王加强, 柴晗阳, 魏新琪, 陈光伟. 衬底温度对氧化锌薄膜微结构及光学性能的影响[J]. 人工晶体学报, 2021, 50(9): 1681-1687. |
[7] | 高云飞, 许宝才, 高海涛, 段荣霞, 孟娜. 钴酸钙薄膜的制备及高温吸波性能研究[J]. 人工晶体学报, 2021, 50(8): 1518-1524. |
[8] | 孙纵横, 沈荣宗, 石艳斌, 周玉荣, 周玉琴, 刘丰珍. 以溶液法PEDOT∶PSS作为空穴传输层的免光刻背接触硅太阳电池[J]. 人工晶体学报, 2021, 50(8): 1534-1540. |
[9] | 高博锋, 任梦昕, 郑大怀, 兀伟, 蔡卫, 孙军, 孔勇发, 许京军. 铌酸锂的耄耋之路:历史与若干进展[J]. 人工晶体学报, 2021, 50(7): 1183-1199. |
[10] | 葛薛豪, 吴静, 邢栋梁, 潘闻景, 张宇林, 蒋青松. NiCoSe4薄膜制备及其在染料敏化太阳能电池中的应用[J]. 人工晶体学报, 2021, 50(6): 1062-1069. |
[11] | 张嘉华, 康桥, 黄仕华. 十二烷基苯磺酸钠与聚乙烯吡咯烷酮复配表面活性剂对单晶硅制绒的影响[J]. 人工晶体学报, 2021, 50(6): 1096-1103. |
[12] | 张纬统, 代波, 任勇, 倪经. 不同退火温度对钡铁氧体薄膜磁性的影响[J]. 人工晶体学报, 2021, 50(5): 845-850. |
[13] | 王欣月, 张兆诚, 黎智杰, 何婉婷, 温锦秀, 罗坚义, 唐秀凤, 王忆. 基底加热温度对ITO薄膜的性能影响研究[J]. 人工晶体学报, 2021, 50(5): 858-865. |
[14] | 幸书林, 何云飞, 何继壮, 李佳桦, 符春林. 钙钛矿太阳能电池中电子传输层现状研究[J]. 人工晶体学报, 2021, 50(5): 959-966. |
[15] | 刘宏, 桑元华, 孙德辉, 王东周, 王继扬. 信息时代的铌酸锂晶体:进展与展望[J]. 人工晶体学报, 2021, 50(4): 708-715. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||