[1] 徐 慢,夏冬林,赵修建.透明导电氧化物薄膜材料及其制备技术研究进展[J].材料导报,2006,20(S2):312-314+322. XU M, XIA D L, ZHAO X J. Progress in transparent conductive oxide films and preparation technology[J]. Materials Review, 2006, 20(S2): 312-314+322(in Chinese). [2] 沈 艳,刘丹丹,宋世金,等.透明导电CuCr1-xMgxO2(x=0~0.08)薄膜的固溶度扩展和c轴外延生长[J].材料导报,2021,35(10):10008-10012. SHEN Y, LIU D D, SONG S J, et al. Solid solubility extension and c-axis epitaxial growth of transparent conductive CuCr1-xMgxO2(x=0~0.08) thin films[J]. Materials Reports, 2021, 35(10): 10008-10012(in Chinese). [3] 刘文婷,张 赟,吴漫漫,等.Cu基铜铁矿结构透明导电氧化物薄膜的研究进展[J].材料导报,2014,28(3):28-32. LIU W T, ZHANG Y, WU M M, et al. Research progress of Cu-based transparent conductive oxide thin films with delafossite structure[J]. Materials Review, 2014, 28(3): 28-32(in Chinese). [4] YANAGI H, INOUE S I, UEDA K, et al. Electronic structure and optoelectronic properties of transparent p-type conducting CuAlO2[J]. Journal of Applied Physics, 2000, 88(7): 4159. [5] 岳锡华,赵 屹,张维佳.ITO透明导电膜的制备及性能[J].航空学报,1996,17(1):57-63. YUE X H, ZHAO Y, ZHANG W J. Preparation and properties of ITO transparent conducting films[J]. Acta Aeronautica et Astronautica Sinica, 1996, 17(1): 57-63(in Chinese). [6] 裴志亮,谭明晖,陈 猛,等.透明导电氧化物ZnO: Al(ZAO)薄膜的研究[J].金属学报,2000,36(1):72-76. PEI Z L, TAN M H, CHEN M, et al. Study of transparent conductive oxide ZnO: Al(ZAO) films[J]. Acta Metallrugica Sinica, 2000, 36(1): 72-76(in Chinese). [7] 宁 洁.射频磁控溅射法制备氧化锡基透明导电氧化物薄膜[D].鞍山:辽宁科技大学,2014. NING J. Doped tin oxide transparent conductive films prepared by RF magnetron sputtering[D]. Anshan: University of Science and Technology Liaoning, 2014(in Chinese). [8] KAWAZOE H, YASUKAWA M, HYODO H, et al. P-type electrical conduction in transparent thin films of CuAlO2[J]. Nature, 1997, 389(6654): 939-942. [9] HAMADA I, KATAYAMA-YOSHIDA H. Energetics of native defects in CuAlO2[J]. Physica B: Condensed Matter, 2006, 376/377: 808-811. [10] TANG Y Y, QIN M, HU Y D, et al. Solid solubility of Mg and enhanced electrical conduction in the C-axis orientation of CuCr1-xMgxO2 polycrystals[J]. Journal of Asian Ceramic Societies, 2020, 8(2): 537-541. [11] DONG G B, ZHANG M, LAN W, et al. Structural and physical properties of Mg-doped CuAlO2 thin films[J]. Vacuum, 2008, 82(11): 1321-1324. [12] RUTTANAPUN C, MAENSIRI S. Effects of spin entropy and lattice strain from mixed-trivalent Fe3+/Cr3+ on the electronic, thermoelectric and optical properties of delafossite CuFe1-xCrxO2(x = 0.25, 0.5, 0.75)[J]. Journal of Physics D: Applied Physics, 2015, 48(49): 495103. [13] HU Y D, LI Y, WU H R, et al. Laser-induced transverse voltage effect in c-axis inclined CuCr0.98Mg0.02O2 thin films with dominant phonon thermal conductivity[J]. Journal of Applied Physics, 2021, 130(14): 143104. [14] 宋世金.错层Ca3Co4O9的光热感生横向电压和热电输运各向异性研究[D].昆明:昆明理工大学, 2018. SONG S J. Photothermally induced transverse voltage and thermoelectric transport anisotropy of staggered Ca3Co4O9[D]. Kunming, China: Kunming University of Science and Technology, 2018(in Chinese). [15] KUROTORI T, SUGIHARA S. Thermoelectric properties of CuAl1-xMxO2 (M=Zn, Ca)[J]. Materials Transactions, 2005, 46(7): 1462-1465. [16] YANAGIYA S, VAN NONG N, XU J, et al. The effect of (Ag, Ni, Zn)-addition on the thermoelectric properties of copper aluminate[J]. Materials, 2010, 3(1): 318-328. [17] ONO Y, SATOH K I, NOZAKI T, et al. Structural, magnetic and thermoelectric properties of delafossite-type oxide, CuCr1-xMgxO2(0≤x≤0.05)[J]. Japanese Journal of Applied Physics, 2007, 46(3A): 1071-1075. [18] 梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993. LIANG Y J, CHEN Y C. Handbook of inorganic thermodynamics data [M]. Shenyang, China. Northeastern University Press, 1993(in Chinese). [19] CHEN L, HU M Y, WU P, et al. Thermal expansion performance and intrinsic lattice thermal conductivity of ferroelastic RETaO4 ceramics[J]. Journal of the American Ceramic Society, 2019, 102(8): 4809-4821. [20] LIU C, REN F, WANG H, et al. Solid-state synthesis and some properties of magnesium-doped copper aluminum oxides[J].MRS Online Proceedings Library, 2010, 1218(1): 1-6. [21] 麦海翔,梁毅枫,梁守智,等.P型氧化物半导体CuAlO2粉末的制备工艺及掺杂[J].材料科学与工程学报,2015,33(3):391-395. MAI H X, LIANG Y F, LIANG S Z, et al. Preparation and doping of CuAlO2 powder as P-type oxides semiconductor[J]. Journal of Materials Science and Engineering, 2015, 33(3): 391-395(in Chinese). [22] LAN W, ZHANG M, DONG G B, et al. Improvement of CuAlO2 thin film electrical conduction by the anisotropic conductivity[J]. Journal of Materials Research, 2007, 22(12): 3338-3343. [23] PARK K, KO K Y, SEONG J K, et al. Microstructure and high-temperature thermoelectric properties of polycrystalline CuAl1-xMgxO2 ceramics[J]. Journal of the European Ceramic Society, 2007, 27(13/14/15): 3735-3738. [24] ZOU Y S, WANG H P, ZHANG S L, et al. Structural, electrical and optical properties of Mg-doped CuAlO2 films by pulsed laser deposition[J]. RSC Advances, 2014, 4(78): 41294-41300. [25] LIU R J, LI Y F, YAO B, et al. Shallow acceptor state in Mg-doped CuAlO2 and its effect on electrical and optical properties: an experimental and first-principles study[J]. ACS Applied Materials & Interfaces, 2017, 9(14): 12608-12616. [26] PELLS G P. Radiation-induced degradation of the intrinsic electrical conductivity of MgAl2O4 and Al2O3[J]. Journal of Nuclear Materials, 1991, 184(3): 177-182. [27] 倪成明.钛酸钙/镁铝尖晶石热导率非平衡分子动力学计算研究[D].大连:大连理工大学,2018. NI C M. Thermal conductivity of CaTiO3/MgAl2O4: a non-equilibrium molecular dynamics caculation[D]. Dalian: Dalian University of Technology, 2018(in Chinese). [28] LIU M S, LIN M C C, HUANG I T, et al. Enhancement of thermal conductivity with carbon nanotube for nanofluids[J]. International Communications in Heat and Mass Transfer, 2005, 32(9): 1202-1210. [29] CHO J Y, SHI X, SALVADOR J R, et al. Thermoelectric properties and investigations of low thermal conductivity in Ga-doped Cu2GeSe3[J]. Physical Review B, 2011, 84(8): 085207. [30] ZHOU T, LENOIR B, COLIN M, et al. Promising thermoelectric properties in AgxMo9Se11 compounds (3.4≤x≤3.9)[J]. Applied Physics Letters, 2011, 98(16): 162106. [31] SHEN J J, FANG T, FU T Z, et al. Lattice thermal conductivity in thermoelectric materials[J]. Journal of Inorganic Materials, 2019, 34(3): 260. [32] ZHANG X Y, PEI Y Z. Manipulation of charge transport in thermoelectrics[J]. Npj Quantum Materials, 2017, 2: 68. [33] MUTA H, KANEMITSU T, KUROSAKI K, et al. Substitution effect on thermoelectric properties of ZrNiSn based half-Heusler compounds[J]. Materials Transactions, 2006, 47(6): 1453-1457. [34] NOZAKI T, HAYASHI K, KAJITANI T. Mn-substitution effect on thermal conductivity of delafossite-type oxide CuFeO2[J]. Journal of Electronic Materials, 2010, 39(9): 1798-1802. [35] SLACK G A, GALGINAITIS S. Thermal conductivity and phonon scattering by magnetic impurities in CdTe[J]. Physical Review, 1964, 133(1A): A253-A268. |