[1] YANG J S. An introduction to the theory of piezoelectricity[M]. Berlin: Springer, 2005. [2] YANG J S. Analysis of piezoelectric devices[M]. Singapore: World Scientific, 2006. [3] 冯冠平.谐振传感理论及器件[M].北京:清华大学出版社,2008. FENG G P. Resonant sensing theory and devices[M]. Beijing: Tsinghua University Press, 2008. [4] 公 勋,章 德.矩形AT切割石英晶体谐振器的振动分析与设计[J].南京大学学报(自然科学版),2000,36(3):336-341. GONG X, ZHANG D. The vibration analysis and design of at-cut rectangular quartz resonators[J]. Journal of Nanjing University (Natural Science), 2000, 36(3): 336-341(in Chinese). [5] MINDLIN R D, YANG J S. An introduction to the mathematical theory of vibrations of elastic plates[M]. Singapore: World Scientific, 2006. [6] LEE P C Y, YU J D, LIN W S. A new two-dimensional theory for vibrations of piezoelectric crystal plates with electroded faces[J]. Journal of Applied Physics, 1998, 83(3): 1213-1223. [7] PEACH R C. A normal mode expansion for piezoelectric plates and certain of its applications[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1988, 35(5): 593-611. [8] WANG J, YU J D, YONG Y K, et al. A finite element analysis of frequency-temperature relations of AT-cut quartz crystal resonators with higher-order Mindlin plate theory[J]. Acta Mechanica, 2008, 199(1/2/3/4): 117-130. [9] YANG X M. Effects of biasing fields on piezoelectric resonators[D]. Nebraska, American: Nebraska University, 2007. [10] 杨嘉实,胡元太,杨新华.电弹性体力学中的偏场方法及其应用[J].力学进展,2004,34(3):408-426. YANG J S, HU Y T, YANG X H. The biasing field method in electroelasticity and its application[J]. Advances in Mechanics, 2004, 34(3): 408-426(in Chinese). [11] TIERSTEN H F. Electroelastic interactions and the piezoelectric equations[J]. The Journal of the Acoustical Society of America, 1981, 70(6): 1567-1576. [12] TIERSTEN H F, ZHOU Y S. The increase in the in-plane acceleration sensitivity of the plano-convex resonator resulting from its thickness asymmetry[J]. Journal of Applied Physics, 1992, 71(10): 4684-4692. [13] YANG J S. Nonlinear torsional vibration of a circular cylindrical piezoelectric rod with relatively large shear deformation[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54(7): 1482-1485. [14] ABE Y. Nonlinear behavior in quartz resonators[C]//IEEE 1991 Ultrasonics Symposium. December 8-11, 1991, Orlando, FL, USA. IEEE, 1991: 449-452. [15] WU R X, WANG J, DU J K, et al. Solutions of nonlinear thickness-shear vibrations of an infinite isotropic plate with the homotopy analysis method[J]. Numerical Algorithms, 2012, 59(2): 213-226. [16] WU R X, WANG J, DU J K, et al. An analysis of nonlinear vibrations of coupled thickness-shear and flexural modes of quartz crystal plates with the homotopy analysis method[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(1): 30-39. [17] WU R X, WANG J, DU J K, et al. The non-linear thickness-shear vibrations of quartz crystal plates under an electric field[J]. International Journal of Non-Linear Mechanics, 2014, 61: 32-38. [18] WU R X, GUO Y, XIE L T, et al. The acceleration effect on the vibration frequency of thickness-shear mode of an infinite isotropic plate[J]. Mechanics of Advanced Materials and Structures, 2021: 1-9. [19] WANG J, WU R X. The extended Galerkin method for approximate solutions of nonlinear vibration equations[J]. Applied Sciences, 2022, 12(6): 2979. [20] JING H M, GONG X L, WANG J, et al. An analysis of nonlinear beam vibrations with the extended Rayleigh-Ritz method[J]. Journal of Applied and Computational Mechanics, 2022. [21] WANG J. The extended Rayleigh-Ritz method for an analysis of nonlinear vibrations[J]. Mechanics of Advanced Materials and Structures, 2021: 1-4. [22] WANG J, ZHAO W H. The determination of the optimal length of crystal blanks in quartz crystal resonators[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(11): 2023-2030. [23] WANG J, ZHAO W H, DU J K, et al. The calculation of electrical parameters of AT-cut quartz crystal resonators with the consideration of material viscosity[J]. Ultrasonics, 2011, 51(1): 65-70. [24] ABD-ALLA A E N, MAUGIN G A. Nonlinear phenomena in magnetostrictive elastic resonators[J]. International Journal of Engineering Science, 1989, 27(12): 1613-1619. [25] YANG J S, YANG X M, TURNER J A, et al. Two-dimensional equations for electroelastic plates with relatively large shear deformations[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50(7): 765-772. |