人工晶体学报 ›› 2022, Vol. 51 ›› Issue (9-10): 1673-1690.
杨光1,2, 刘晓双2,3, 李佳君2,3, 徐凌波1, 崔灿1, 皮孝东2,3, 杨德仁2,3, 王蓉2,3
收稿日期:
2022-07-01
出版日期:
2022-10-15
发布日期:
2022-11-02
通信作者:
崔 灿,博士,教授。E-mail:cancui@zstu.edu.cn作者简介:
杨 光(1998—),男,江苏省人,硕士研究生。E-mail:202030302215@mails.zstu.edu.cn。基金资助:
YANG Guang1,2, LIU Xiaoshuang2,3, LI Jiajun2,3, XU Lingbo1, CUI Can1, PI Xiaodong2,3, YANG Deren2,3, WANG Rong2,3
Received:
2022-07-01
Online:
2022-10-15
Published:
2022-11-02
摘要: 4H碳化硅(4H-SiC)单晶具有禁带宽度大、载流子迁移率高、热导率高和稳定性良好等优异特性,在高功率电力电子、射频/微波电子和量子信息等领域具有广阔的应用前景。经过多年的发展,6英寸(1英寸=2.54 cm)4H-SiC单晶衬底和同质外延薄膜已得到了产业化应用。然而,4H-SiC单晶中的总位错密度仍高达103~104 cm-2,阻碍了4H-SiC单晶潜力的充分发挥。本文介绍了4H-SiC单晶中位错的主要类型,重点讲述4H-SiC单晶生长、衬底晶圆加工以及同质外延过程中位错的产生、转变和湮灭机理,并概述4H-SiC单晶中位错的表征方法,最后讲述了位错对4H-SiC单晶衬底和外延薄膜的性质,以及4H-SiC基功率器件性质的影响。
中图分类号:
杨光, 刘晓双, 李佳君, 徐凌波, 崔灿, 皮孝东, 杨德仁, 王蓉. 4H碳化硅单晶中的位错[J]. 人工晶体学报, 2022, 51(9-10): 1673-1690.
YANG Guang, LIU Xiaoshuang, LI Jiajun, XU Lingbo, CUI Can, PI Xiaodong, YANG Deren, WANG Rong. Dislocations in 4H Silicon Carbide Single Crystals[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(9-10): 1673-1690.
[1] EDDY C R Jr, GASKILL D K. Materials science. Silicon carbide as a platform for power electronics[J]. Science, 2009, 324(5933): 1398-1400. [2] AMANO H, BAINES Y, BEAM E, et al. The 2018 GaN power electronics roadmap[J]. Journal of Physics D: Applied Physics, 2018, 51(16): 163001. [3] WANG J F, YAN F F, LI Q, et al. Coherent control of nitrogen-vacancy center spins in silicon carbide at room temperature[J]. Physical Review Letters, 2020, 124(22): 223601. [4] 李 倩.国内外碳化硅衬底材料发展的技术现状[J].四川化工,2017,20(5):15-17. LI Q. Silicon carbide substrate material progress over the abroad[J]. Sichuan Chemical Industry, 2017, 20(5): 15-17(in Chinese). [5] WELLMANN P J. Review of SiC crystal growth technology[J]. Semiconductor Science and Technology, 2018, 33(10): 103001. [6] MUSOLINO M, XU X P, WANG H, et al. Paving the way toward the world's first 200 mm SiC pilot line[J]. Materials Science in Semiconductor Processing, 2021, 135: 106088. [7] 彭 燕,陈秀芳,谢雪健,等.半绝缘碳化硅单晶衬底的研究进展[J].人工晶体学报,2021,50(4):619-628. PENG Y, CHEN X F, XIE X J, et al. Research progress of semi-insulating silicon carbide single crystal substrate[J]. Journal of Synthetic Crystals, 2021, 50(4): 619-628(in Chinese). [8] MANNING I, MATSUDA Y, CHUNG G, et al. Progress in bulk 4H SiC crystal growth for 150 mm wafer production[J]. Materials Science Forum, 2020, 1004: 37-43. [9] LA VIA F, CAMARDA M, LA MAGNA A. Mechanisms of growth and defect properties of epitaxial SiC[J]. Applied Physics Reviews, 2014, 1(3): 031301. [10] MANNING I, CHUNG G Y, SANCHEZ E, et al. Influence of dopant concentration on dislocation distributions in 150 mm 4H SiC wafers[J]. Materials Science Forum, 2019, 963: 60-63. [11] QUAST J, HANSEN D, LOBODA M, et al. High quality 150 mm 4H SiC wafers for power device production[J]. Materials Science Forum, 2015, 821/822/823: 56-59. [12] KIMOTO T, WATANABE H. Defect engineering in SiC technology for high-voltage power devices[J]. Applied Physics Express, 2020, 13(12): 120101. [13] J H D a B D. Introduction to dislocations[M]. 2001. [14] KIMOTO T. Bulk and epitaxial growth of silicon carbide[J]. Progress in Crystal Growth and Characterization of Materials, 2016, 62(2): 329-351. [15] BERKMAN E, LEONARD R T, PAISLEY M J, et al. Defect status in SiC manufacturing[J]. Materials Science Forum, 2009, 615/616/617: 3-6. [16] LEONARD R T, KHLEBNIKOV Y, POWELL A R, et al. 100 mm 4HN-SiC wafers with zero micropipe density[J]. Materials Science Forum, 2008, 600/601/602/603: 7-10. [17] 彭同华,刘春俊,王 波,等.宽禁带半导体碳化硅单晶生长和物性研究进展[J].人工晶体学报,2012,41(S1):234-241. PENG T H, LIU C J, WANG B, et al. Growth and properties of wide bandgap semiconductor silicon carbide single crystal[J]. Journal of Synthetic Crystals, 2012, 41(S1): 234-241(in Chinese). [18] GLASS R C, HENSHALL D, TSVETKOV V F, et al. SiC-seeded crystal growth[J].MRS Bulletin, 1997, 22(3): 30-35. [19] OHTANI N, KATSUNO M, FUJIMOTO T, et al. Surface step model for micropipe formation in SiC[J]. Journal of Crystal Growth, 2001, 226(2/3): 254-260. [20] LIU C J, PENG T H, WANG S C, et al. Formation mechanism of type2 micropipe defects in 4H-SiC crystals[J]. CrystEngComm, 2013, 15(7): 1307-1313. [21] SHIOMI H, KINOSHITA H, FURUSHO T, et al. Crystal growth of micropipe free 4H-SiC on 4H-SiC seed and high-purity semi-insulating 6H-SiC[J]. Journal of Crystal Growth, 2006, 292(2): 188-191. [22] SHINAGAWA N, IZAWA T, MANABE M, et al. Populations and propagation behaviors of pure and mixed threading screw dislocations in physical vapor transport grown 4H-SiC crystals investigated using X-ray topography[J]. Japanese Journal of Applied Physics, 2020, 59(9): 091002. [23] SUO H, TSUKIMOTO S, ETO K, et al. Evaluation of the increase in threading dislocation during the initial stage of physical vapor transport growth of 4H-SiC[J]. Japanese Journal of Applied Physics, 2018, 57(6): 065501. [24] HOSHINO N, KAMATA I, TOKUDA Y, et al. Fast growth of n-type 4H-SiC bulk crystal by gas-source method[J]. Journal of Crystal Growth, 2017, 478: 9-16. [25] KAMATA I, HOSHINO N, TOKUDA Y, et al. Dislocation analysis of 4H-SiC crystals obtained at fast growth rate by the high-temperature gas source method[J]. Materials Science Forum, 2014, 778/779/780: 59-62. [26] OHTANI N, KATSUNO M, TSUGE H, et al. Dislocation processes during SiC bulk crystal growth[J]. Microelectronic Engineering, 2006, 83(1): 142-145. [27] SAKWE S A, WELLMANN P J. Influence of growth temperature on the evolution of dislocations during PVT growth of bulk SiC single crystals[J]. Materials Science Forum, 2007, 556/557: 263-266. [28] DUDLEY M, HUANG X R, HUANG W, et al. The mechanism of micropipe nucleation at inclusions in silicon carbide[J]. Applied Physics Letters, 1999, 75(6): 784-786. [29] LIU J L, GAO J Q, CHENG J K, et al. Methods for the reduction of the micropipe density in SiC single crystals[J]. Journal of Materials Science, 2007, 42(15): 6148-6152. [30] NAKAMURA D, GUNJISHIMA I, YAMAGUCHI S, et al. Ultrahigh-quality silicon carbide single crystals[J]. Nature, 2004, 430(7003): 1009-1012. [31] MA R H, ZHANG H, DUDLEY M, et al. Thermal system design and dislocation reduction for growth of wide band gap crystals[J]. Journal of Crystal Growth, 2003, 258(3/4): 318-330. [32] SELDER M, KADINSKI L, DURST F, et al. Global modeling of the SiC sublimation growth process: prediction of thermoelastic stress and control of growth conditions[J]. Journal of Crystal Growth, 2001, 226(4): 501-510. [33] CHEREDNICHENKO D I, DRACHEV R V, KHLEBNIKOV I I, et al. Thermal stress as the major factor of defect generation in SiC during PVT growth[J].MRS Online Proceedings Library, 2003, 742(1): 2181-2186. [34] GAO B, KAKIMOTO K. Dislocation-density-based modeling of the plastic behavior of 4H-SiC single crystals using the Alexander-Haasen model[J]. Journal of Crystal Growth, 2014, 386: 215-219. [35] ZHANG M, MCD HOBGOOD H, TREU M, et al. Generation of stacking faults in highly doped n-type 4H-SiC substrates[J]. Materials Science Forum, 2004, 457/458/459/460: 759-762. [36] MAEDA K, SUZUKI K, FUJITA S, et al. Defects in plastically deformed 6H SiC single crystals studied by transmission electron microscopy[J]. Philosophical Magazine A, 1988, 57(4): 573-592. [37] SUEMATSU H, SUZUKI T, ISEKI T, et al. Kinking and cracking caused by slip in single crystals of silicon carbide[J]. Journal of the American Ceramic Society, 1991, 74(1): 173-178. [38] GAO B, KAKIMOTO K. Three-dimensional modeling of basal plane dislocations in 4H-SiC single crystals grown by the physical vapor transport method[J]. Crystal Growth and Design, 2014, 14(3): 1272-1278. [39] STEINER J, RODER M, NGUYEN B D, et al. Analysis of the basal plane dislocation density and thermomechanical stress during 100 mm PVT growth of 4H-SiC[J]. Materials, 2019, 12(13): 2207. [40] HERRO Z G, EPELBAUM B M, BICKERMANN M, et al. Effective increase of single-crystalline yield during PVT growth of SiC by tailoring of temperature gradient[J]. Journal of Crystal Growth, 2004, 262(1/2/3/4): 105-112. [41] WELLMANN P, NEUBAUER G, FAHLBUSCH L, et al. Growth of SiC bulk crystals for application in power electronic devices - process design, 2D and 3D X-ray in situ visualization and advanced doping[J]. Crystal Research and Technology, 2015, 50(1): 2-9. [42] NAKANO T, SHINAGAWA N, YABU M, et al. Formation and multiplication of basal plane dislocations during physical vapor transport growth of 4H-SiC crystals[J]. Journal of Crystal Growth, 2019, 516: 51-56. [43] SONODA M, NAKANO T, SHIOURA K, et al. Structural characterization of the growth front of physical vapor transport grown 4H-SiC crystals using X-ray topography[J]. Journal of Crystal Growth, 2018, 499: 24-29. [44] HEINDL J, DORSCH W, STRUNK H P, et al. Dislocation content of micropipes in SiC[J]. Physical Review Letters, 1998, 80(4): 740-741. [45] MAXIMENKO S I, PIROUZ P, SUDARSHAN T S. Open core dislocations and surface energy of SiC[J]. Materials Science Forum, 2006, 527/528/529: 439-442. [46] MAHAJAN S. Origins of micropipes in SiC crystals[J]. Applied Physics Letters, 2002, 80(23): 4321-4323. [47] GUTKIN M Y, SHEINERMAN A G, ARGUNOVA T S, et al. Ramification of micropipes in SiC crystals[J]. Journal of Applied Physics, 2002, 92(2): 889-894. [48] KOJIMA K, NISHIZAWA S, KURODA S, et al. Effect of growth condition on micropipe filling of 4H-SiC epitaxial layer[J]. Journal of Crystal Growth, 2005, 275(1/2): e549-e554. [49] KAMATA I, TSUCHIDA H, JIKIMOTO T, et al. Structural transformation of screw dislocations via thick 4H-SiC epitaxial growth[J]. Japanese Journal of Applied Physics, 2000, 39(Part 1, No. 12A): 6496-6500. [50] NAKAMURA D, KIMOTO T. Transformation of hollow-core screw dislocations: transitional configuration of superscrew dislocations[J]. Japanese Journal of Applied Physics, 2020, 59(9): 095502. [51] YAMAMOTO Y, HARADA S, SEKI K, et al. High-efficiency conversion of threading screw dislocations in 4H-SiC by solution growth[J]. Applied Physics Express, 2012, 5(11): 115501. [52] UJIHARA T, KOZAWA S, SEKI K, et al. Conversion mechanism of threading screw dislocation during SiC solution growth[J]. Materials Science Forum, 2012, 717/718/719/720: 351-354. [53] HARADA S, YAMAMOTO Y, SEKI K, et al. Reduction of threading screw dislocation utilizing defect conversion during solution growth of 4H-SiC[J]. Materials Science Forum, 2013, 740/741/742: 189-192. [54] DHANARAJ G, CHEN Y, CHEN H, et al. Growth mechanism and dislocation characterization of silicon carbide epitaxial films[J].MRS Online Proceedings Library, 2011, 911(1): 27-32. [55] DUDLEY M, WU F, WANG H, et al. Stacking faults created by the combined deflection of threading dislocations of Burgers vector c and c+a during the physical vapor transport growth of 4H-SiC[J]. Applied Physics Letters, 2011, 98(23): 232110. [56] WANG H H, WU F Z, YANG Y, et al. Characterization of defects in SiC substrates and epilayers[J]. ECS Transactions, 2014, 64(7): 145-152. [57] YAMAMOTO Y, HARADA S, SEKI K, et al. Low-dislocation-density 4H-SiC crystal growth utilizing dislocation conversion during solution method[J]. Applied Physics Express, 2014, 7(6): 065501. [58] KOMATSU N, MITANI T, HAYASHI Y, et al. Application of defect conversion layer by solution growth for reduction of TSDs in 4H-SiC bulk crystals by PVT growth[J]. Materials Science Forum, 2019, 963: 71-74. [59] MITANI T, ETO K, MOMOSE K, et al. Massive reduction of threading screw dislocations in 4H-SiC crystals grown by a hybrid method combined with solution growth and physical vapor transport growth on higher off-angle substrates[J]. Applied Physics Express, 2021, 14(8): 085506. [60] WANG H H, BYRAPA S Y, WU F, et al. Basal plane dislocation multiplication via the hopping frank-read source mechanism and observations of prismatic glide in 4H-SiC[J]. Materials Science Forum, 2012, 717/718/719/720: 327-330. [61] HARADA S, YAMAMOTO Y, SEKI K, et al. Different behavior of threading edge dislocation conversion during the solution growth of 4H-SiC depending on the Burgers vector[J]. Acta Materialia, 2014, 81: 284-290. [62] NAKAMURA D, YAMAGUCHI S, GUNJISHIMA I, et al. Topographic study of dislocation structure in hexagonal SiC single crystals with low dislocation density[J]. Journal of Crystal Growth, 2007, 304(1): 57-63. [63] YAO Y Z, ISHIKAWA Y, SUGAWARA Y, et al. Molten KOH etching with Na2O2 additive for dislocation revelation in 4H-SiC epilayers and substrates[J]. Japanese Journal of Applied Physics, 2011, 50(7R): 075502. [64] SUN W, SONG Y T, LIU C J, et al. Basal plane dislocation-threading edge dislocation complex dislocations in 6H-SiC single crystals[J]. Materials Express, 2015, 5(1): 63-67. [65] WANG H, WU F, BYRAPPA S, et al. Basal plane dislocation multiplication via the hopping frank-Read source mechanism in 4H-SiC[J]. Applied Physics Letters, 2012, 100(17): 172105. [66] CHEN Y, DUDLEY M. Direct determination of dislocation sense of closed-core threading screw dislocations using synchrotron white beam X-ray topography in 4H silicon carbide[J]. Applied Physics Letters, 2007, 91(14): 141918. [67] SANCHEZ E K, LIU J Q, DE GRAEF M, et al. Nucleation of threading dislocations in sublimation grown silicon carbide[J]. Journal of Applied Physics, 2002, 91(3): 1143-1148. [68] DENG H, LIU N, ENDO K, et al. Atomic-scale finishing of carbon face of single crystal SiC by combination of thermal oxidation pretreatment and slurry polishing[J]. Applied Surface Science, 2018, 434: 40-48. [69] HE Y, YUAN Z W, SONG S Y, et al. Investigation on material removal mechanisms in photocatalysis-assisted chemical mechanical polishing of 4H-SiC wafers[J].International Journal of Precision Engineering and Manufacturing, 2021, 22(5): 951-963. [70] 张 玺,王 蓉,张序清,等.碳化硅单晶衬底加工技术现状及发展趋势[J].中央民族大学学报(自然科学版),2021,30(4):5-12. ZHANG X, WANG R, ZHANG X Q, et al. Research status and development trend of silicon carbide single crystal substrate machining technology[J]. Journal of Minzu University of China (Natural Sciences Edition), 2021, 30(4): 5-12(in Chinese). [71] MENG B B, ZHANG F H, LI Z P. Deformation and removal characteristics in nanoscratching of 6H-SiC with Berkovich indenter[J]. Materials Science in Semiconductor Processing, 2015, 31: 160-165. [72] GOEL S, YAN J W, LUO X C, et al. Incipient plasticity in 4H-SiC during quasistatic nanoindentation[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 34: 330-337. [73] ESWAR PRASAD K, RAMESH K T. Hardness and mechanical anisotropy of hexagonal SiC single crystal polytypes[J]. Journal of Alloys and Compounds, 2019, 770: 158-165. [74] NAWAZ A, MAO W G, LU C, et al. Nano-scale elastic-plastic properties and indentation-induced deformation of single crystal 4H-SiC[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 66: 172-180. [75] ZHU B, ZHAO D, ZHAO H W. A study of deformation behavior and phase transformation in 4H-SiC during nanoindentation process via molecular dynamics simulation[J]. Ceramics International, 2019, 45(4): 5150-5157. [76] LIU X S, WANG R, ZHANG J R, et al. Doping-dependent nucleation of basal plane dislocations in 4H-SiC[J]. Journal of Physics D: Applied Physics, 2022, 55(33): 334002. [77] YAN J W, GAI X H, HARADA H. Subsurface damage of single crystalline silicon carbide in nanoindentation tests[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(11): 7808-7811. [78] IDRISSI H, LANCIN M, REGULA G, et al. Study of dislocation mobility in 4H SiC by X-ray transmission topography, chemical etching and transmission electron microscopy[J]. Materials Science Forum, 2004, 457/458/459/460: 355-358. [79] LIU X S, ZHANG J R, XU B J, et al. Deformation of 4H-SiC: the role of dopants[J]. Applied Physics Letters, 2022, 120(5): 052105. [80] HUANG Y C, WANG R, QIAN Y X, et al. Improving the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements[EB/OL]. 2021: arXiv: 2104.10359. https://arxiv.org/abs/2104.10359 [81] KIMOTO T. Material science and device physics in SiC technology for high-voltage power devices[J]. Japanese Journal of Applied Physics, 2015, 54(4): 40103.1. [82] ELLISON A, SÖRMAN E, SUNDQVIST B, et al. Mapping of threading screw dislocations in 4H n-type SiC wafers[J]. Materials Science Forum, 2016, 858: 376-379. [83] BENAMARA M, ZHANG X, SKOWRONSKI M, et al. Structure of the carrot defect in 4H-SiC epitaxial layers[J]. Applied Physics Letters, 2005, 86(2): 021905. [84] SAKO H, KOBAYASHI K, OHIRA K, et al. Microstructure of stacking fault complex/carrot defects at interface between 4H-SiC epitaxial layers and substrates[J].Journal of Electronic Materials, 2020, 49(9): 5213-5218. [85] KONISHI K, YAMAMOTO S, NAKATA S, et al. Stacking fault expansion from basal plane dislocations converted into threading edge dislocations in 4H-SiC epilayers under high current stress[J]. Journal of Applied Physics, 2013, 114(1): 014504. [86] YAMASHITA Y, NAKATA R, NISHIKAWA T, et al. Expansion of Shockley stacking fault observed by scanning electron microscope and partial dislocation motion in 4H-SiC[J]. Journal of Applied Physics, 2018, 123(16): 161580. [87] YAKIMOV E E, YAKIMOV E B. Radiation-enhanced dislocation glide in 4H-SiC at low temperatures[J]. Journal of Alloys and Compounds, 2020, 837: 155470. [88] GALECKAS A, LINNROS J, PIROUZ P. Recombination-induced stacking faults: evidence for a general mechanism in hexagonal SiC[J]. Physical Review Letters, 2006, 96(2): 025502. [89] VANMIL B L, STAHLBUSH R E, MYERS-WARD R L, et al. Basal plane dislocation reduction for 8° off-cut, 4H-SiC using in situ variable temperature growth interruptions[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2008, 26(4): 1504. [90] HORI T, DANNO K, KIMOTO T. Fast homoepitaxial growth of 4H-SiC with low basal-plane dislocation density and low trap concentration by hot-wall chemical vapor deposition[J]. Journal of Crystal Growth, 2007, 306(2): 297-302. [91] BALACHANDRAN A, SUDARSHAN T S, CHANDRASHEKHAR M V S. Basal plane dislocation free recombination layers on low-doped buffer layer for power devices[J]. Crystal Growth & Design, 2017, 17(4): 1550-1557. [92] 开翠红,王 蓉,杨德仁,等.基于碳化硅衬底的宽禁带半导体外延[J].人工晶体学报, 2021,50(9):1780-1795. KAI C H, WANG R, YANG D R, et al. Epitaxy of wide bandgap semiconductors on silicon carbide substrate[J]. Journal of Synthetic Crystals, 2021, 50(9): 1780-1795(in Chinese). [93] SUMAKERIS J J, BERGMAN P, DAS M K, et al. Techniques for minimizing the basal plane dislocation density in SiC epilayers to reduce Vf drift in SiC bipolar power devices[J]. Materials Science Forum, 2006, 527/528/529: 141-146. [94] ZHANG Z, MOULTON E, SUDARSHAN T S. Mechanism of eliminating basal plane dislocations in SiC thin films by epitaxy on an etched substrate[J]. Applied Physics Letters, 2006, 89(8): 081910. [95] BAIERHOFER D, THOMAS B, STAIGER F, et al. Defect reduction in SiC epilayers by different substrate cleaning methods[J]. Materials Science in Semiconductor Processing, 2022, 140: 106414. [96] DONG L, ZHENG L, LIU X F, et al. Defect revelation and evaluation of 4H silicon carbide by optimized molten KOH etching method[J]. Materials Science Forum, 2013, 740/741/742: 243-246. [97] LIU X F, YAN G G, SANG L, et al. Defect appearance on 4H-SiC homoepitaxial layers via molten KOH etching[J]. Journal of Crystal Growth, 2020, 531: 125359. [98] NISHIO J, OTA C, OKADA A, et al. Informative aspects of molten KOH etch pits formed at basal plane dislocations on the surface of 4H-SiC[J]. Physica Status Solidi (a), 2020, 217(16): 2000332. [99] ZHUANG D, EDGAR J H. Wet etching of GaN, AlN, and SiC: a review[J]. Materials Science and Engineering: R: Reports, 2005, 48(1): 1-46. [100] KATSUNO M, OHTANI N, TAKAHASHI J, et al. Mechanism of molten KOH etching of SiC single crystals: comparative study with thermal oxidation[J]. Japanese Journal of Applied Physics, 1999, 38(Part 1, No. 8): 4661-4665. [101] PAL P, KUMAR S, SINGH S K. Study of eutectic etching process for defects analysis in n type 4H SiC[J]. Defence Science Journal, 2020, 70(5): 515-519. [102] SONG H Z, RANA T, SUDARSHAN T S. Investigations of defect evolution and basal plane dislocation elimination in CVD epitaxial growth of silicon carbide on eutectic etched epilayers[J]. Journal of Crystal Growth, 2011, 320(1): 95-102. [103] YANG G, LUO H, LI J, et al. Discrimination of dislocations in 4H-SiC by inclination angles of molten-alkali etched pits[J]. Journal of semiconductors. 2022. Under review [104] 张序清,罗 昊,李佳君,等.半导体碳化硅湿法腐蚀工艺研究[J].人工晶体学报,2022,51(2):333-343. ZHANG X Q, LUO H, LI J J, et al. Research progress on wet etching of semiconductor SiC[J]. Journal of Synthetic Crystals, 2022, 51(2): 333-343(in Chinese). [105] YAO Y Z, ISHIKAWA Y, SATO K, et al. Dislocation revelation from (0001) carbon-face of 4H-SiC by using vaporized KOH at high temperature[J]. Applied Physics Express, 2012, 5(7): 075601. [106] YU J Y, YANG X L, PENG Y, et al. Revelation of the dislocations in the C-face of 4H-SiC substrates using a microwave plasma etching treatment[J]. CrystEngComm, 2021, 23(2): 353-359. [107] LI J J, LUO H, YANG G, et al. Nitrogen decoration of basal-plane dislocations in 4H-SiC[J]. Physical Review Applied, 2022, 17(5): 054011. [108] LI J, YANG G, WANG R, et al. Electronic properties of basal plane dislocations of 4H-SiC[J]. Asia-Pacific Conference on Silicon Carbide and Related Materials, 2022. [109] HUANG J R, CHEN T W, LEE J W, et al. A perspective on leakage current induced by threading dislocations in 4H-SiC Schottky barrier diodes[J]. Materials Letters, 2022, 310: 131506. [110] FIORENZA P, ALESSANDRINO M S, CARBONE B, et al. Understanding the role of threading dislocations on 4H-SiC MOSFET breakdown under high temperature reverse bias stress[J]. Nanotechnology, 2020, 31(12): 125203. [111] ŁAEWSKI J, JOCHYM P T, PIEKARZ P, et al. DFT modelling of the edge dislocation in 4H-SiC[J]. Journal of Materials Science, 2019, 54(15): 10737-10745. [112] CHYNOWETH A G, PEARSON G L. Effect of dislocations on breakdown in silicon p-n junctions[J]. Journal of Applied Physics, 1958, 29(7): 1103-1110. [113] NEUDECK P G, HUANG W, DUDLEY M. Breakdown degradation associated with elementary screw dislocations in 4H-SiC p+n junction rectifiers[J]. Solid-State Electronics, 1998, 42(12): 2157-2164. [114] NEUDECK P G, HUANG W, DUDLEY M. Study of bulk and elementary screw dislocation assisted reverse breakdown in low-voltage (<250 V) 4H-SiC p+-n junction diodes. I. DC properties[J]. IEEE Transactions on Electron Devices, 1999, 46(3): 478-484. [115] BERECHMAN R A, SKOWRONSKI M, SOLOVIEV S, et al. Electrical characterization of 4H-SiC avalanche photodiodes containing threading edge and screw dislocations[J]. Journal of Applied Physics, 2010, 107(11): 114504. [116] FUJIWARA H, NARUOKA H, KONISHI M, et al. Relationship between threading dislocation and leakage current in 4H-SiC diodes[J]. Applied Physics Letters, 2012, 100(24): 242102. [117] FUJIWARA H, NARUOKA H, KONISHI M, et al. Impact of surface morphology above threading dislocations on leakage current in 4H-SiC diodes[J]. Applied Physics Letters, 2012, 101(4): 042104. [118] SKOWRONSKI M, HA S. Degradation of hexagonal silicon-carbide-based bipolar devices[J]. Journal of Applied Physics, 2006, 99(1): 011101. [119] BU Y, YOSHIMOTO H, WATANABE N, et al. Fabrication of 4H-SiC PiN diodes without bipolar degradation by improved device processes[J]. Journal of Applied Physics, 2017, 122(24): 244504. [120] OTA C, NISHIO J, OKADA A, et al. Origin and generation process of a triangular single Shockley stacking fault expanding from the surface side in 4H-SiC PIN diodes[J].Journal of Electronic Materials, 2021, 50(11): 6504-6511. [121] SKOWRONSKI M, LIU J Q, VETTER W M, et al. Recombination-enhanced defect motion in forward-biased 4H-SiC p-n diodes[J]. Journal of Applied Physics, 2002, 92(8): 4699-4704. [122] NISHIO J, OTA C, IIJIMA R. Structural study of single Shockley stacking faults terminated near substrate/epilayer interface in 4H-SiC[J]. Japanese Journal of Applied Physics, 2022, 61(SC): SC1005. [123] GAN F, JUN S D, KIMOTO T. Nonradiative recombination at threading dislocations in 4H-SiC epilayers studied by micro-photoluminescence mapping[J]. Journal of Applied Physics, 2011, 110(3): 033525. [124] BERWIAN P, KAMINZKY D, ROβHIRT K, et al. Imaging defect luminescence of 4H-SiC by ultraviolet-photoluminescence[J]. Solid State Phenomena, 2015, 242: 484-489. [125] STAHLBUSH R E, LIU K X, ZHANG Q, et al. Whole-wafer mapping of dislocations in 4H-SiC epitaxy[J]. Materials Science Forum, 2007, 556/557: 295-298. [126] TANUMA R, KAMATA I, HADORN J P, et al. Two-photon-excited, three-dimensional photoluminescence imaging and dislocation-line analysis of threading dislocations in 4H-SiC[J]. Journal of Applied Physics, 2018, 124(12): 125703. [127] LIU K X, ZHANG X, STAHLBUSH R E, et al. Differences in emission spectra of dislocations in 4H-SiC epitaxial layers[J]. Materials Science Forum, 2008, 600/601/602/603: 345-348. [128] KAWAHARA C, JUN S D, KIMOTO T. Identification of dislocations in 4H-SiC epitaxial layers and substrates using photoluminescence imaging[J]. Japanese Journal of Applied Physics, 2014, 53(2): 020304. [129] THIERRY-JEBALI N, KAWAHARA C, MIYAZAWA T, et al. Application of UV photoluminescence imaging spectroscopy for stacking faults identification on thick, lightly n-type doped, 4°-off 4H-SiC epilayers[J]. AIP Advances, 2015, 5(3): 037121. [130] NISHIO J, OKADA A, OTA C, et al. Photoluminescence analysis of individual partial dislocations in 4H-SiC epilayers[J]. Materials Science Forum, 2020, 1004: 376-386. [131] LUO H, LI J J, YANG G, et al. Electronic and optical properties of threading dislocations in n-type 4H-SiC[J]. ACS Applied Electronic Materials, 2022, 4(4): 1678-1683. |
[1] | 彭倩文, 吉祥. 退火温度对BCZT外延薄膜电学性能的影响及其导电机制分析[J]. 人工晶体学报, 2024, 53(1): 82-89. |
[2] | 唐海跃, 张文杰, 杨晓明, 苏榕冰, 王祖建, 龙西法, 何超. 铁电单晶三维定向的X射线衍射方法[J]. 人工晶体学报, 2023, 52(9): 1576-1581. |
[3] | 王黎光, 芮阳, 盛旺, 马吟霜, 马成, 陈炜南, 邹啟鹏, 杜朋轩, 黄柳青, 罗学涛. 横向磁场下坩埚转速对半导体级直拉单晶硅熔体中流场与氧浓度的影响机制[J]. 人工晶体学报, 2023, 52(9): 1641-1650. |
[4] | 崔杰, 杨晓京, 李云龙, 张高赞, 李宗睿. 基于纳米压痕与纳米划痕实验的单晶硅超精密切削特性研究[J]. 人工晶体学报, 2023, 52(9): 1651-1659. |
[5] | 高妍, 董海涛, 张小可, 冯文然. (AlxGa1-x)2O3结构、电子和光学性质的第一性原理研究[J]. 人工晶体学报, 2023, 52(9): 1674-1680. |
[6] | 王晓亮, 赵鹏, 庄宏岩, 丁岩帅, 李清连, 孙军, 黄存新. 应对未来战争的“光学盾牌”——超大尺寸蓝宝石单晶板材[J]. 人工晶体学报, 2023, 52(9): 1730-1732. |
[7] | 王迪, 汤港, 张博, 王墉哲, 张中晗, 姜大朋, 寇华敏, 苏良碧. Nd,Y∶SrF2激光晶体的位错缺陷表征及分布研究[J]. 人工晶体学报, 2023, 52(7): 1208-1218. |
[8] | 武旭, 张振, 张中晗, 武安华, 苏良碧. 激光加热基座法制备Er∶YAP单晶光纤及性能表征[J]. 人工晶体学报, 2023, 52(7): 1308-1316. |
[9] | 张泽宇, 吴宇飞, 王涛, 张健, 贾志泰, 陶绪堂. 蓝宝石单晶光纤生长及性能研究[J]. 人工晶体学报, 2023, 52(7): 1335-1344. |
[10] | 郭俊, 刘坚, 陈鹏, 宋青松, 张志恒, 徐晓东, 徐军. Nd∶CaYAlO4单晶光纤的生长及光谱性能研究[J]. 人工晶体学报, 2023, 52(7): 1345-1351. |
[11] | 陈根强, 赵浠翔, 于众成, 李政, 魏强, 林芳, 王宏兴. 异质外延单晶金刚石及其相关电子器件的研究进展[J]. 人工晶体学报, 2023, 52(6): 931-944. |
[12] | 赵军一, 刘润泽, 楼逸扬, 霍永恒. 确定性固态量子光源基础材料与器件[J]. 人工晶体学报, 2023, 52(6): 960-981. |
[13] | 宋长坤, 黄晓莹, 陈英鑫, 喻颖, 余思远. 半导体单量子点的分子束外延生长及调控[J]. 人工晶体学报, 2023, 52(6): 982-996. |
[14] | 汪正鹏, 张崇德, 孙新雨, 胡天澄, 崔梅, 张贻俊, 巩贺贺, 任芳芳, 顾书林, 张荣, 叶建东. 切割角蓝宝石基氧化镓薄膜MOCVD外延及日盲紫外光电探测器制备[J]. 人工晶体学报, 2023, 52(6): 1007-1015. |
[15] | 李秉欣, 丁元丰, 芦红. 单晶α-Sn薄膜的外延生长及输运性质研究进展[J]. 人工晶体学报, 2023, 52(6): 1025-1035. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||